

Using PADI to Develop an Online Self-Assessment System that Supports

Student Science Learning in FOSS

Cathleen Kennedy, University of California at Berkeley

Michael Timms, University of California at Berkeley

Kathy Long, Lawrence Hall of Science

Susan Ketchner, Lawrence Hall of Science

Dan Bluestein, Lawrence Hall of Science

Presented at the American Educational Research Association annual conference,
April 14, 2005

Montreal, Canada

This work is supported by the National Science Foundation under grant REC-0129331
(PADI Implementation Grant). Opinions expressed are those of the authors and not
necessarily NSF. Please do not cite or quote without permission of the authors.

Background

The FOSS (Full Option Science System) Project at the Lawrence Hall of Science has

recently developed a middle school course called Force and Motion. The PADI/FOSS

team has developed an online, interactive Self-Assessment System to reinforce students’

classroom learning. The system provides an instructional mode, in which students

practice solving problems, and an assessment mode that provides feedback about

progress. The practice mode uses student proficiencies to determine the type of hint the

student is most likely to need, while the assessment mode uses proficiencies to provide

feedback to students and teachers about progress. The practice mode functions as a

tutorial until students feel ready to test themselves by requesting a “Quick Check” to see

their progress. In this paper we discuss how the PADI assessment tools provided support

for the development and implementation of the Self-Assessment System.

Conceptual foundations of the Self-Assessment System

Knowing when a student needs help and what help to give is at the heart of effective

tutoring. Making that determination is especially challenging for a computer-based

interactive learning environment (ILE) because it involves tracking information about the

student's performance in a format that can be interpreted by the computer system. Human

tutors may use verbal and visual cues, like hesitancy in speech or body language, but

ILEs must rely on other cues. The approach to tutoring that is embodied in the Self

Assessment system described in this paper is derived from a review of a number of

empirical studies of human tutoring and computer-based tutoring. From this review we

developed a set of characteristics of effective tutoring that are useful in designing a

computer-based system that can adapt to students’ needs. The characteristics of effective

human tutoring are summarized below.

Tutors lead the tutoring process – Katz et al (2003) found that human tutors

initiated two thirds of the tutoring dialogues after a student completed a problem-

solving episode, while students only initiated one-third. However, although tutors

more often initiated the tutoring process, students preferred to be led to a

 1 1

productive learning path, rather than be forced to follow it (Lewis et al, 2003). For

example, a learner might be given feedback that he or she is using the wrong

method in solving a problem and allowed to pick another method, rather than the

tutor imposing the correct method.

Good tutors are able to adapt – Human tutors are not always successful on their

first attempt at helping a student with a hint. However, they are adept at

recovering from a failed tutorial interaction, and are able to quickly rephrase or

explain in a different way (Johnson, 2003). In an early study of mothers tutoring

their 3-4 year olds, Wood and Middleton (1975) found that learning outcomes for

tutees varied by the specific features of the tutorial activity. For example, they

found that if the tutor made a verbal suggestion with which the child did not

comply, the tutor provided more help. However, if the child followed a

suggestion, the tutor would allow the child to progress with more scope for

autonomy by simply acknowledging the child’s progress, or remaining silent. The

process in which the tutorial interventions reflect the moment-to-moment activity

of the child as he solves problems has become known as “instructional

contingency”

Successful tutors adopt a conversational style – Not surprisingly, considering

we are highly social animals, humans prefer tutors to use a conversational style.

Tutors often use phrases that incorporate the term “we.” For example, “ Why

don’t we go back to the previous step of the problem.” Sometimes they express

their feedback using the first person. For example, “I would start at the top.”

(Johnson, 2003). Verbal feedback can also lighten the cognitive load when the

student is already engaged in the practice or problem solving process (Roberts,

Pioch and Ferguson, 2000).

Effective tutors use hints – Tutors often offer hints (Johnson 2003) as the

opening to their tutorial offering. Hints are offered in a variety of ways, often as a

suggestion or as a question.

 2 2

Hints are not the only tutoring strategy – Human tutors use not only hints, but

also questioning and dialogue in a Socratic style, allowing students to follow an

incorrect path. This allows students to get stuck and, hopefully, realize their error.

The tutor simply flags the errors for later discussion.

Tutors structure their feedback – In developing the verbal tutor for the

computerized TRANSoM system, which coaches students who are learning to

control remotely operated vehicles, Roberts et al (2000) found it beneficial to give

a student just enough feedback to allow him or her to make a correction, without

giving too much away. In situations where students were making a number of

simultaneous errors, the system was designed to prioritize which error was more

significant and to give feedback on that one only to prevent the student from

being swamped in a cacophony of tutoring responses. TRANSoM’s feedback

becomes increasingly specific the longer the errors are ignored.

Timing of feedback to students is important – Tutors tend to give different

feedback at different times in the problem solving process. During problem

solving is the time for advice about what action to take next or feedback about the

relationship of a particular action to a global strategy for solving a type of

problem. Tutors commonly leave tactical or strategic feedback on how to

approach a particular problem or how to classify problems until the student has

completed their solution. Similarly, general feedback like tips that might be

considered “tricks of the trade” are left until the end of the problem solving, as is

feedback of a conceptual nature. Tutors avoid interrupting a student’s flow of

thought in the problem-solving process with such feedback. In other words,

feedback that might be thought of as metacognitive seems most effective at the

end of a problem-solving episode.

Post-solution feedback is important – Katz et al (2003) studied the effectiveness

of tutoring feedback during problem solving and after problem solving (post-

 3 3

solution). They found that post-solution feedback and reflective questions in

combination with feedback during problem solving was more effective than

feedback only during problem solving. In particular, post-solution dialogues

supported learning when they were initiated by the tutor, focused on abstract

concepts or strategies associated with the current problem, and elaborated upon or

restated discussion from the problem-solving stages.

No difference between human feedback and “canned” feedback – An

encouraging finding for developers of computer-based help systems was made by

Katz et al (2003). There were no statistically significant differences in learning

gains between students who received human feedback as part of their post-

solution tutoring and those who received “canned” feedback provided by the

computer system.

The great hope of interactive learning environments is that the human tutoring process

can be analyzed, reduced to algorithms, and implemented in computer-based tutoring.

Then, ILEs would be able to extend to many students the opportunity of one-to-one

tutoring that is currently only a pipe-dream in our increasingly large classrooms of 30 or

more students. Unfortunately, human tutoring has proved to be a complex activity that

has not been studied as extensively as is needed to be able to build demonstrably

effective tutoring strategies and algorithms for ILEs (Aleven et al, 2003).

Although almost all interactive learning environments provide help to students, there

have been few studies that focus on how such help should be tailored to a student’s

particular ability level and needs. In the early days of developing ILEs, there were many

other challenges to meet, such as tracking actions of the learners and modeling their

learning; it may be that the process of providing help seems fairly simplistic and has

therefore not received the attention it deserves. A review of the studies that have

examined providing help in intelligent learning environments reveals that the provision of

help is, in fact, a complex topic.

 4 4

Student help systems fall broadly into two main categories: on-demand help and

automated help. On-demand help systems are ones in which the learner controls when

they seek help, and which help to choose. Automated help systems are ones in which the

learning system controls the provision of help, and assistance is delivered when the

system judges that the student needs it and in the format that the system determines is

optimal. Both systems have advantages and disadvantages.

The best summary of the state of research on on-demand help in interactive learning

environments is provided by Aleven et al (2003). In their conclusions, Aleven et al point

out that one of the main issues in providing on-demand help is that learners often fail to

use such systems effectively and may even ignore them completely. Three separate

studies have shown that students tend not to use on-demand help offered in ILEs. Mandl,

Graeser and Fischer (2000) report on a series of studies on problem-oriented learning in

which medical students solved diagnostic cases on their own. They found that even

advanced medical students made inadequate use of the help offered in the system. The

ILE presented cases on anemia and related diseases for the students to diagnose, and

offered several types of help to students, including a glossary of medical concepts, a link

to lectures containing relevant background knowledge, and automated advice from an

expert diagnostician. Mandl et al found that, despite these available help offerings,

students tended to try to solve the diagnostic cases unaided. Think-aloud protocols

revealed that even after gaps and failures were revealed to students, they did not seek

help.

Another quasi-experimental study cited by Aleven et al (2003) conducted by Hofer,

Niegemann, Eckert and Rinn (1996) found that even when students report that a help

system provides useful direction, they still might not use it frequently. Hofer et al found

that students value a help system more highly when it offers help that is directly related to

the task to be performed. However, even then, students seldom used it. In a second study,

Hofer compared students’ use of two different types of help, one in which the system

intervened with help when the student made a mistake and another which was available

 5 5

on demand at various points and offered a hyper-linked text book. Students judged the

problem feedback to be more useful than the hyperlinked text, and rarely used the text.

In the third study showing ineffective use of on-demand help, Aleven and Koedinger

(2000) examined help seeking in a version of the Geometry Cognitive Tutor. The

Geometry Tutor provides context-sensitive hints on demand, which are specific to the

current problem and to student progress on the problems up to that point. Hints are

presented in levels (up to eight) that give progressively deeper help that reveals more and

more of the correct solution until the answer is given to the student. The system also

provides an on-line glossary that lists relevant problem solving skills and provides

examples. Aleven and Koedinger found that students tended to quickly click through the

hints to reach the bottom level hint, which provides the deepest level of help, and spent

little time with hints that explained why the answer was the way it was. Students also

largely ignored the extensive glossary help. Such help-seeking behaviors were deemed

unlikely to promote learning. In conclusion, on-demand help can be helpful, but tends to

be used so ineffectively that it is not supportive of learning.

The other type of help system is automated help, in which the system identifies when a

student needs help and judges the type of help to deliver at the appropriate time. There is

little literature dealing with this precise topic. In their 2003 paper entitled Help Seeking

and Help Design in Interactive Learning Environments, Aleven, Stahl, Schworm, Fischer

and Wallace provide an excellent review of what is a fairly scant body of research.

Aleven et al cite studies that have begun to reveal the characteristics of providing help in

Interactive Learning Environments (ILEs) that appear to be effective and under what

circumstances.

Below is a summary of the main findings about the most effective types of help to

provide in interactive learning systems.

Types of help – Function-oriented, or principle-oriented, help should be the

primary method of help in ILEs, while operative help should be offered only in

 6 6

the last resort. Dutke and Reimer (2000) found that operative help (help with steps

along the way to a specific goal) was effective in supporting performance

throughout the task at hand, but principle-oriented help (explanations of how a

particular principle works) was more effective in producing learning that could be

transferred beyond the immediate task.

Types of hint – The type of hint that is most beneficial depends on the learner’s

cognitive ability. In two studies of a mathematics ILE called Animalwatch,

Arroyo and her colleagues (Arroyo, Beck, Beal, Wing, & Woolf, 2001; Arroyo,

Beck, Woolf, Beal & Schultz, 2000) compared two types of hint. Concrete hints

were ones that made reference to concrete objects such as base-10 blocks and

bars, and made connections to real-life problems. Abstract hints used direct

operations over numerals. Concrete hints were found to be more effective with

students with a low level of cognitive development, whereas abstract hints were

more useful to students at higher levels of cognitive development. This suggests

that to achieve maximum impact, the level of abstraction of the hints provided to

learners should be matched to their level of cognitive development.

Interactivity of hints – Arroyo et al (2000, 2001) found that learner self-

confidence and performance on tasks were affected by the level of interactivity of

the hints, and were related to gender. They compared hints with a highly

interactive multimedia component in which students were asked for several kinds

of input with ones that had short messages and in which students only had to

provide minimal input. Boys had higher self-confidence and performance when

using the shorter, less interactive hints. When the hints were more interactive,

boys’ self-confidence declined. Girls’ self-confidence was unaffected by the level

of interactivity, but they performed better on tasks when supported by more

interactive help.

Type of information in the feedback – McKendree (1990) investigated the use

of four different types of feedback information in a tutor for teaching geometry

 7 7

proofs. One type was minimal feedback in which students were notified that they

had made an error, but gave no information on what the error was. The second

type was condition violation feedback in which students were told that the

geometry rule they had selected could not be applied as intended. The third type

was goal feedback that stated the correct sub-goal on which the student should

focus. The fourth type of feedback was combined feedback that stated both the

subgoal and an unsatisfied rule condition. McKendree found that goal feedback

produced better learning than minimal feedback on the error or its cause (the

condition violation feedback). Goal feedback led to better knowledge transfer to

tasks that were unsupported by feedback, and learners were more likely to correct

their errors after goal feedback than after the other types of feedback.

It is evident that there is a body of knowledge about what makes for effective feedback,

but to date, few intelligent learning systems have systematically taken account of these

findings. It seems probable that an automated help system that mirrored, as far as possible

within the limitations of the computer system, effective practices from human and

computer tutoring would be more effective than one that lacked such a theoretical basis.

This paper describes the development of a Self-Assessment System for middle-school

students that are an interactive learning environment for scaffolding student learning

about distance and speed. It was designed to embody as many of the principles of

effective human and computer tutoring as possible within the constraints of the delivery

system.

General description of the FOSS Self-Assessment System

The Full Option Science System (FOSS) curriculum that included units on distance,

speed and acceleration was published in a second edition in January 2005. During the

final stages of its development, curriculum developers at the Lawrence Hall of Science

turned their attention to creating assessment items that could form the basis of a student

self-assessment that was to accompany the revised curriculum unit. A Self-Assessment

System was developed in which students received feedback while they practiced on

problems and were also able to monitor their own progress through short summative

 8 8

assessments. The development was part of the work on the NSF-funded Principled

Assessment Designs for Inquiry (PADI) project that also involves the University of

Maryland, SRI International, and the University of California, Berkeley.

10 pre-test
problems that
represent one
at each level of
problem type.

Practice
problems at
each level of
problem type.

Students take 10
pre-test
problems, one
from each of the
10 types of
problems speed.

Students work
through the
practice
problems,
scaffolded by
hints that model
good problem
solving at key
steps.

Quick-check problems
are unscaffolded.
Student responses from
these are sent to the
scoring engine. Students
get feedback on overall
performance.

Figure 1: Broad design of the Self-Assessment Syste

The purpose of the self-assessment is to allow students

of the FOSS curriculum, to practice on problems like th

they are being taught. As shown in Figure 1, the self-as

pretest, the practice problems, and the quick check. Stu

system can determine their initial ability level. There a

in the curriculum and students answer one problem fro

pretest. When working through practice problems, stud

problems that are similar to those that they recently enc

their teacher. In this phase of the system, students get s

in the form of feedback on their responses and hints to

on problems at one level until they feel confident to go

quick check. In the quick check, students complete a se

 9 9
Students
complete
practice
problems
until they
feel
confident
enough to
tackle the
“Quick-
check”
m.

, as they reac

e ones in the

sessment has

dents first ta

re ten differen

m each of the

ents gain exp

ountered in t

upport from t

aid their prog

 on, at which

t of up to five
5 Quick-check
problems - three at
the current level of
problem type and
two from previous
types.
h the appropriate part

 curriculum unit that

 three parts: a short

ke a pretest so the

t levels of problems

 ten levels in the

erience with

he classroom with

he computer system

ress. Students work

 point they take a

 problems that

include three from the current level and one each from the previous two levels. Based on

the score from the quick check, the system makes decisions about whether the student

needs more practice on problems at that level or is ready to proceed to the next level.

Use of the PADI System in the Design of the Assessment Program

As stated above, the Self-Assessment System has ten levels of problems representing

successively more difficult problem solving contexts. Designers wanted students to see

different problems at each level throughout the practice sessions and in the Quick Check.

To accomplish this, the system was designed to use item shells in which the main body of

the question remained constant, but the numeric values in the problems were randomly

selected from an appropriate (to the specific problem) range of values. The item shells for

each problem level were developed by using the PADI Design System, and stored as task

specifications within the PADI database.

In the current project, development of the task specifications began with an analysis of

what was to be measured by the assessment overall. Designers discussed trade-offs

between detailed individual measures on each of the cognitive components involved and

an aggregated measure of knowledge. The individual measures we considered included

knowledge of distance concepts, knowledge of speed concepts, knowledge of

acceleration concepts, and mathematical ability. Ultimately, the decision was made to

produce one content-oriented measure and one mathematical ability measure from the

assessment. This measurement objective of the assessment, termed a Student Model in

the PADI Design System, included two student model variables, one for knowledge about

distance, speed and acceleration (DSA) and one for mathematical ability (Math). The

Student Model “DSA + Math” became the basis for all of the task specifications; the

tasks that students eventually interact with were intended to elicit evidence that would

indicate levels of knowledge on DSA and Math.

 10 10

PADI Database

S

Implementation Phase e

S

Realist

 H

FOSS Self-
Assessment

System

Fi

PA

Th

pr

in

pr

rep

eq

wi

so

co

ap

req

DS

PADI
Design

ystem

 Design Phas
gure 2. The overall architec

DI Design System.

e next step in designing the

oblems students would encou

the number of questions that

oblems was the same. Each p

resentation of the problem s

uation for solving the proble

th numbers and units from th

lution to respond to the ques

nsidered evidence of student

propriate measure (DSA or M

uired primarily mathematica

A knowledge.

Copy of FOSS
task specs
Student
Database

ture of the FOSS Self-As

task specifications was to l

nter. Although specific pr

 were asked in the problem

roblem begins with a prom

ituation. Students are first

m from a list of equations.

e problem text. Next, they

tion posed in the problem p

 knowledge, and as such n

ath). Designers determine

l ability, while the other r

11 11

ic values
sessment System

ayout the format o

oblem levels had s

, the general layou

pt and a graphical

asked to select the

 Then, they fill in t

 solve the equation

rompt. Each respo

eeds to be associate

d that solving the

esponses required p

ints
an

f th

om

t o

 ap

he

 an

ns

d

eq

ri
PADI
coring

Engine
d the

e

e variation

f the

propriate

 equation

d use that

e is

with the

uation

marily

The layout of stimulus materials and the type of individual responses (i.e., selection from

a list, constructed response, etc.) became parts of the task specification. The association

of responses to measures also became part of the task specification so that proficiency

estimates could be computed correctly from the response data when the Self-Assessment

System is interacting with students. In PADI terms, a Measurement Model defines the

way proficiency estimates are computed from the response data.

As mentioned above, the PADI Design System is used to design task specifications, or

item shells, as they are called in FOSS. It is not an authoring or assessment delivery

system. So, once all of the task specifications were finalized and entered into the PADI

Design System, they were copied into the database of the FOSS Self-Assessment System.

Then, when the FOSS Self-Assessment System needs to deliver an item to a student, it

retrieves an item shell for the appropriate problem level from the local database, fills in

the numeric parts with randomized values, and renders the item on the computer screen.

It then gathers response data from student entries, and if, needed, packages the student

response data and the task specification data (i.e., the measurement model part) to send to

the PADI Scoring Engine. The PADI Scoring Engine takes that data and computes

proficiency estimates using multidimensional item response modeling and returns

proficiency estimates on each measure for the student.

Figure 3 is an excerpt from the task specification for a level eight problem. Note that the

Student Model Summary indicates that items generated from this shell will produce

evidence of students’ knowledge of speed and of their mathematical ability. The Student

Model, “FOSS DSA + Math,” and a general summary of the Measurement Model is

provided, along with an Evaluation Summary and a summary of Work Products. Details

of the item layout are contained in an Activity object that is associated with the task

specification.

Every task specification contains at least one activity. In the FOSS Self-Assessment

System, we generated exactly one activity for each task specification. An excerpt of the

 12 12

activity for the Problem Level Eight task specification is shown in Figure 4. Here, the

details of the measurement models, which are used by the Scoring Engine, are specified,

as are the evaluation procedures, the work products, and the way the item is to be

presented to the student. All of this information is encoded in a format that is accessible

by a computerized assessment authoring and delivery system, such as the FOSS Self-

Assessment System.

Figure 3. Part of the task specification from the PADI Design System for a problem

level eight item shell.

 13 13

Figure 4. Part of the activity from the problem level eight task specification

contained in the PADI Design System.

 14 14

An example of an item at problem level eight as generated and rendered to a student is

shown in Figure 5.

Figure 5. Screen shot of a problem at level eight.

As can be seen in Figure 5, the shell for an item has several components. At the top is the

statement of the problem. The text of the problem is constant across problems, but the

values of the given information, such as the distance and the time traveled in problem

eight, are randomly generated from a list of realistic values for each item. The values are

stored as pairs to ensure that appropriate values result each time. The other component is

the drop-down selection list of the possible equations to use to solve the problem. In this

prototype, there were three options in the list; distance = velocity x time, velocity =

distance/time, and time = distance/velocity. After selecting an equation from the drop-

down menu, the student presses the “select equation” button, which then causes the

equation to be represented in another part of the item shell, the white “work space” area.

The equation representation in the workspace has input boxes for each of the equation

values and for the calculated answer values. The student determines from the problem

statement and graphic the values to be entered and types them into the workspace area

 15 15

along with the units. The student then makes the calculation pertinent to the equation, and

enters that value and the units into the box for the result. Upon completion, the student

clicks on the “I’m done” button to end the problem.

Students are scored on two variables in each problem; one that measured their

understanding of speed (as a component of a larger distance, speed and acceleration

knowledge variable) and one that measured their mathematical ability. Scores were

assigned for each of the relevant steps in the problem. For example, in problem type eight

shown in Figure 5, students are scored on the following problem steps:
Variable for scoring

Problem step

Speed
problem-solving

Mathematics

Selects correct equation X

Places all the correct values into the equation X

All values in the equation have the correct units X

Calculated value is correct X
Calculated value has correct units X

The automated help system

Figure 6 shows the architecture of the Self-Assessment System that includes the

automated help system. The first time that a student logs in to the system, he or she takes

the pretest. Throughout the pretest, the system records the student’s responses to each

question, tracking separately the responses that map to the content knowledge variable

and to the mathematics variable. At the conclusion of the pretest, the system sends the

scores on both variables to the PADI Scoring Engine, which resides on an external server

and is part of the PADI system. The statistical model of the evidence rules that relate how

student scores on the tasks (problems) should be interpreted are contained in the

measurement model components of the task specifications stored in the Self-Assessment

System database.

 16 16

Scores
and MM

Hint
level

o

Ability
estimates

Student answers a
set of questions
without help
(Pretest)

Scoring Engine

Student practices a
level 1 problem with
help from the hints
system

Hints system
determines level of
hints needed for
problem level 1

Quick
Check?

T

S

Figure 6: Flo

N

Student an
set of level
questions w
help

Student ge
progress re

o

Ne
leve

Student pra
level 2 prob
help from th
system

ystem continues

wchart of the F
Yes
Scores
and MM

Ability
estimates

swers a
 1
ithout

Scoring Engine

ts
port

xt
l?
N

Yes
STAR
Hint
level

Hints system
determines level of
hints needed for
problem level 2

ctices a
lem with
e hints

 iteratively through problem levels

OSS Self-Assessment System logic.

17 17

Using this statistical model, the Scoring Engine calculates a proficiency estimate for each

student model variable, which represents the student’s current ability level. These values

are returned to the Self-Assessment System. The Self-Assessment System maintains a

history of these estimates each time they are generated for a student. The student’s most

recent ability estimate (e.g., from the pretest or from a prior Quick Check) is used to

determine the type of hints that the student will receive in the next round of practice

problems.

After the pretest, the student begins the practice problems at level one. During the

practice session hints are available to the student. Generally, the student has control over

when to have their work checked, as described shortly. One exception to this is at the

start of the problem. If the student has not selected the correct equation to solve the

problem and tries to add it to the workspace by clicking the “Select Equation” button, the

system offers a hint. An example of how a hint is provided to a student who has selected

the wrong equation is shown in Figure 7. If the student did not choose the correct

equation, a hint appears in the field at the bottom right hand section of the screen, next to

the “check my work” button. Hints are text-based and are designed to point out to the

learner the features of the problem he or she should pay attention to. The system gives

more or less detailed help depending on the hint stream that has been selected based on

their latest ability estimate. In addition to the written hint in the text box there are other

visual prompts with some hints.

Hints are selected based on the ability estimate of the student. For each problem there are

three “streams” of hints. The level 1 hint stream is for higher ability learners who need

the least amount of help, level 2 is for medium ability learners who need intermediate

help, and level 3 is for learners of lower ability who need deeper, more concrete hints. In

Figure 7, the hint shown is from the level 3 hint stream, the most helpful level of hints.

The written hint tells the student that he or she needs to select a different equation.

Because it is a level 3 hint, the text specifies the equation to select and, for additional

reinforcement, a visual hint in the form of the equation being shown in green alongside

the “select equation” button. This initial hint repeats until the student selects the correct

 18 18

equation. The rationale for preventing students from proceeding through the problem

after selecting the wrong equation is that it is a waste of instructional time to allow them

to continue. A student cannot be guided to a successful solution of the problem if he or

she is applying the wrong equation, so feedback on any other steps beyond that could

imply that the student was on a correct solution path and thus confuse them.

Other than that initial, unsolicited check of their progress, hints are under the control of

the student. Whenever the student clicks on the “Check My Work” button, the system

checks her work in a systematic way. In other words, the learner has control of when to

seek feedback. The student may, if she wants, proceed to the end of the problem before

clicking the “Check My Work” button.

Figure 7. Screen shot of a “Practice” problem showing the feedback the student

received.

Once invoked, the help system checks the work according to each of the scorable steps of

the problem that are listed on page 18. The student continues through the problem, having

the system check their work as frequently as she wants.

 19 19

After completing at least one problem as a practice activity at the current level of

problems, the student may opt to take a “Quick-Check.” The student decides if he or she

wants to practice on more than one problem. Students can practice as much as they feel is

necessary before they opt to take the quick check. The level of hints stays the same until

the student takes a Quick Check because the student’s ability estimate stays the same

(i.e., it is not recomputed). After taking a Quick Check, the student’s ability estimate is

updated and the hint level may change.

When a student selects the “Quick Check” button, the system delivers three problems at

the student’s current level of performance. So, if the student is at the Problem 1 level, she

will get three problems that use exactly the same item shell that she has just been

practicing on, although the values are still randomly generated, and the system ensures

that she does not get the exact same problem. In these Quick Check problems, the student

gets no hints, even though she may make mistakes. When the student has completed each

quick check problem she clicks on an “I’m done” button to continue to the next problem

in the set. At the completion of the Quick Check items, the Self-Assessment System,

which has been capturing the scores at each problem step, compiles the scores and sends

them to the scoring engine. The scoring engine calculates the student’s ability based upon

the latest scores from the Quick-Check and returns the estimate to the self-assessment

program. This estimate is used to determine the level of hints that the student will be

given for the next level of practice problems.

Level Type of Problem

10 Average speed over a multiple stage trip (given distance and times)
9 Average speed over a multiple stage trip of different lengths (given distance and times)
8 Average speed over a two stage trip (given distance and times)
7 Compare time of two objects (given distance and speeds)
6 Compare time of two objects on a trip (given distance and speeds)
5 Time traveled by one object (given distance and speed)
4 Distance traveled by one object (given time and speed)
3 Compare speed of two objects (given distance and times)
2 Speed of one object with conversion of units (given distance and time)
1 Speed of one object (given distance and time)

Figure 8. A student progress report.

 20 20

The student also gets feedback after each quick check in the form of a report as shown in

Figure 8. The report is based upon the student ability estimate on each variable and maps

the student progress against certain learning benchmarks on the dimensions being

measured. Progress is indicated to the student in a simple traffic light analogy. A green

“light” indicates that the student has done well enough at that level for her to proceed. A

yellow light means more practice at that level is advised. A red light tells the student that

she is strongly recommended not to proceed beyond that level without more practice.

Although a student is advised to practice more when she gets a yellow or red light on her

report, the system allows the student to proceed if she wishes. However, the teacher of

the class is also able to review the student’s report and so could. Students progress

iteratively through ten levels of problems of increasing difficulty in the Self-Assessment

System.

Conclusion

The PADI design system provides a method for designing and storing detailed task

specifications that can then be used by an assessment authoring and delivery application

to generate tasks, render them to students, gather responses and provide feedback. The

PADI system includes a Scoring Engine to compute student proficiencies from response

data and task specifications. The FOSS Self-Assessment System uses the task

specifications as item shells to produce unique problems to students. It also accesses the

Scoring Engine to produce ability estimates that are used to make decisions about the

level of hints that students are most likely to need. The system is currently undergoing a

field test to determine the efficacy of this approach to delivering hints that are tailored to

individual learners and their needs at a particular time in their use of the interactive

learning environment.

 21 21

 22 22

References

Aleven, V., & Koedinger, K. R. (2000). Limitations of Student Control: Do Students
Know When They Need Help? Paper presented at the Intelligent Tutoring
Systems: 5th International Conference, Montreal, Canada.

Aleven, V., Stahl, E., Schworm, S., Fischer, F., & Wallace, R. (2003). Help Seeking and
Help Design in Interactive Learning Environments. Review of Educational
Research, 73(Fall 2003), 277-320.

Arroyo, I., Beck, J. E., Beal, C. R., Wing, R. E., & Woolf, B. (2001). Analyzing students'
response to help provision in an elementary mathematics Intelligent Tutoring
System. Paper presented at the Workshop on Help Provision and Help Seeking at
the Tenth International Conference on Artificial Intelligence in Education. San
Antonio, TX.

Arroyo, I., Beck, J. E., Woolf, B., Beal, C. R., & Schultz, K. (2000). Macroadapting
Animalwatch to gender and cognitive differences with respect to hint interactivity
and symbolism. Paper presented at the Fifth International Conference on
Intelligent Tutoring Systems, Montreal, Canada.

Dutke, S., & Reimer, T. (2000). Evaluation of two types of online help information for
application software: Operative and function-oriented help. Journal of Computer
Assisted Learning, 16, 307-315.

Hofer, M., Niegemann, H. M., Eckert, A., & Rinn, U. (1996). Pedagogische Hilfen fur
interaktive selbstgesteurte Lernprozesse und Konstruktion eines neuen Verfahrens
zur Wissensdiagnose [Instructional help for interactive self-directed learning
processes and construction of a new procedure for knowledge diagnosis].
Zeitschrift fur Berufs- und Wirtschaftspadagogik Beiheft, 13, 53-67.

Johnson, W. L., Shaw, E., Marshall, A., & LaBore, C. (2003). Evolution of User
Interaction: The Case of Agent Adele. Paper presented at the IUI'03, Miami, FL.

Katz, S., Allbritton, D., & Connelly, J. (2002). Going Beyond the Problem Given: How
Human Tutors Use Post-Solution Discussions to Support Transfer. International
Journal of Artificial Intelligence in Education, 13.

Mandl, H., Graesel, C., & Fischer, F. (2000). Problem-oriented learning: Facilitating the
use of domain-specific and control strategies through modeling by an expert. In
W. J. Perrig & A. Gob (Eds.), Control of human behavior, mental processes and
consciousness (pp. 165-182). Mahwah, NJ: Erlbaum.

McKendree, J. (1990). Effective Feedback Content for Tutoring Complex Skills. Paper
presented at the HUMAN-COMPUTER INTERACTION.

Roberts, B., Pioch, N., & Ferguson, W. (2000). Verbal Coaching During a Real-time
Task. International Journal of Artificial Intelligence in Education, 11, 377-388.

Wood, D., & Middleton, D. (1975). A study of assisted problem solving. British Journal
of Psychology, 66, 181-191.

	This work is supported by the National Science Foundation under grant REC-0129331 (PADI Implementation Grant). Opinions expressed are those of the authors and not necessarily NSF. Please do not cite or quote without permission of the authors.
	Conceptual foundations of the Self-Assessment System
	Successful tutors adopt a conversational style –
	General description of the FOSS Self-Assessment System
	Figure 1: Broad design of the Self-Assessment System.
	Figure 5. Screen shot of a problem at level eight.

