
Collaborative Modeling: Hiding UML and Promoting Data
Examples in NEMo

Patricia Schank
SRI International

patricia.schank@sri.com

Lawrence Hamel
Codeguild, Inc.

cscw@codeguild.com

ABSTRACT
Domain experts are essential for successful software develop-
ment, but these experts may not recognize their ideas when
abstracted into Unified Modeling Language (UML) or ontolo-
gies. We describe a Web-based tool for modeling that creates
and manipulates a simple data model without representing i t
in UML, while promoting collaboration and the use of exam-
ples to compare and validate the model. The open-source tool,
“NEMo,” is a by-product of a team effort to invent and refine a
complex data model and library of examples.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/ Specifica-
tions – elicitation methods, methodologies, tools. D.2.10
[Software Engineering]: Design – methodologies, repre-
sentation. H.1.2 [Information Interfaces and Presenta-
t i o n]: Group and Organization Interfaces – computer-
supported cooperative work. I.6.5 [Simulation and Mod-
eling]: Model Development – modeling methodologies.

General Terms
Design, Human Factors.

Keywords
Domain modeling, data modeling, participatory design,
knowledge extraction, example-driven design, UML, XML.

1. INTRODUCTION
A recent NSF workshop identified several challenges and op-
portunities for research programs to advance the science of
design of software systems [12], including the need to im-
prove the ability of stakeholders to creatively explore designs,
not in the abstract, but through participatory, contextualized
processes. This paper describes one approach to support the
design of a particular information artifact: the data model.

Many communities of practice have undertaken the creation of
XML data models in an effort to standardize digital communi-

cation in their fields. The collaborative design of these data
models is often the primary activity of such groups, and their
published models can have a significant impact. For example,
HL7 (hl7.org) is widely used in medical informatics, QTI (ims-
global.org) is popular in learning-management systems, and
FIX (fixprotocol.org) is used in securities exchange. More
generally, saving information is fundamental to most software
systems, and for a system to be useful and adaptable, it must
have a sound data model––as accurate and complete as possi-
ble, yet flexible enough to accommodate inevitable changes.

1.1 Challenges for Data Modeling
Within workgroups of domain experts, the contributions of
individuals are mediated by tools and representations, and
perhaps by technical personnel who may exclusively edit the
representations. But experts can be sidelined by poor tools
and processes. New techniques are needed to increase partici-
pation of domain experts in data modeling to support creative,
interdisciplinary, collaborative exploration to promote better
designs [12] and to enable domain experts to validate that
their domain is represented correctly by a candidate design.
Participatory design––in which stakeholders serve a proactive,
central role in the design team, working together with engi-
neers on a design––can often lead to more usable designs and
shortened development and test cycles [11].

The effort to define a data model collaboratively raises issues
similar to those well documented in the fields of knowledge
engineering and knowledge management: the difficulties of
knowledge extraction and capture of social context. In artifi-
cial intelligence research, the development of expert systems
relies on extracting knowledge from experts and representing
that knowledge in the system. In practice, it is quite difficult
and time-consuming for experts to articulate their (often tacit)
knowledge and skills, removed from the context of an activity
[7]. Designers of knowledge management systems experience
similar issues when they try to codify employees’ situated
knowledge within a company knowledge base [2].

On the basis of the research literature and our own experiences
(described below), we organize the challenges facing the prac-
tice of data modeling into the following categories:

• Limited participation. Typically, a software engineer medi-
ates all contributions. To understand or apply the model,
participants need a fair amount of technical expertise.

• Insufficient negotiation. Barriers to debate include inability
to edit the model, lack of understanding of the model, and
limited sense of ownership.

• Insufficient validation . Discussion without concrete exam-
ples can lead to ambiguity and misunderstanding.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW’04, November 6–10, 2004, Chicago, IL, U.S.A.
Copyright 2004 ACM 1-58113-810-5/04/0011…$5.00.

• Misunderstanding across disciplines. With abstract repre-
sentations, terms can be misinterpreted or have different
definitions in different disciplines.

• Low-level conversations. Discussions can be sidelined b y
incidental issues, such as (often complex) model notation.

1.2 Changing the Practice of Data Modeling
As part of the NSF-funded Principled Assessment Designs for
Inquiry (PADI) project (padi.sri.com) described below, we cre-
ated a system, which we now call NEMo (Negotiated Example-
based Modeling) to support the creation of a data model for
the domain of student assessment. NEMo supports an evolv-
ing data model and enables a participatory process, including
the generation of examples by a large and varied group of do-
main experts. It has helped us capture ideas of both domain
experts and technical staff. We noticed the following changes
in the practice of data modeling:

• Broader participation. New people became involved in the
conversations and had the understanding and motivation to
critique proposals. Most team members created examples.

• More negotiation. Model proposals were thoroughly de-
bated through much iteration.

• Increased validation. Discussions of abstract models were
grounded in concrete examples, and proposals were commu-
nicated fairly quickly between team members.

• Improved understanding across disciplines. Understanding
was less clearly split down disciplinary lines. There was less
need for one camp to “translate” ideas for the other.

• Elevated conversations. Discussions focused on important
domain issues, such as the kinds of information that were
important to capture and how to build flexibility into the
model to accommodate future changes.

Our hypothesis is that NEMo changed the practice of data
modeling in PADI because of the following key features:

• Examples led to broader participation, increased validation,
and understanding across disciplines.

• The familiar Web interface led to broader participation and
more negotiation.

• Remote access via the Web led to more negotiation.
• Lack of database or object-oriented data modeling verbiage

(e.g., relations, entities) led to broader participation and ele-
vated conversations.

• The ability to switch quickly between competing models led
to more negotiation and elevated conversations.

We also suspect that the process for using NEMo may have
been just as important as the system itself. The PADI team tele-
conferenced weekly, met face-to-face annually, and had weekly
e-mail conversations about our model. We broke up into small
groups that focused on developing the model or applying it to
their concrete situation. A variety of experts (including psy-
chometricians, curriculum developers, education researchers,
and software architects) facilitated the conversations by com-
ing to meetings with candidate models and examples to cri-
tique. Participants were also prompted by e-mail to log in to
the system and comment on proposed models and examples.

2. RELATED WORK
The Unified Modeling Language (UML) is the de facto stan-
dard for object-oriented data modeling [1]. However, UML
takes considerable time to learn, and is difficult to use for
communication with nontechnical members of a project [9,

13]. Most UML tools are intended for an audience of software
engineers who will translate the UML into programming code,
and most UML tools do not offer support for entering sample
data to validate a data model. To share UML, the engineer edit-
ing a UML diagram might export it as an image file and trans-
fer it to a Web server for others to critique. For instance, IBM’s
Rational Rose supports the creation and publishing of UML
diagrams to the Web. For a teleconference, some kind of
screen-sharing technology like Microsoft’s NetMeeting might
be used to share the application. Poseidon (gentleware.com)
allows the sharing of UML models in a client-server configura-
tion, as long as each concurrent user has a license. Yet other
tools interpret pen strokes to create UML elements, combining
the ease of freehand drawing with the benefits of computer
editing and saving [5, 9]. However, these scenarios do not fa-
cilitate control of the model (or competing models) by non-
technical experts, and there is no clear support for creating
concrete instances of the models within these tools.

In the field of artificial intelligence, ontological engineering
tools have been created to help developers and domain experts
build effective knowledge-based systems. Some tools attempt
to support communities of nontechnical domain experts [6, 8],
but few support the entering of examples to validate the model
design. An exception is Protégé [8], but even so, these sample
records are subordinated to the role of design annotations,
with functionality for manipulating examples buried among
many other features. To share models across a distributed team,
users must perform additional configuration, since Protégé is a
desktop-, not Web-based, application.

In contrast, NEMo is specially oriented around examples as the
primary device for communication and negotiation. The re-
search literature indicates the benefits of such contextualiza-
tion. Research in learning has shown that focusing on exam-
ples, rather than abstract representations, can both enhance and
accelerate comprehension and learning [e.g., 4] due to issues
related to working memory capacity and motivation. In soft-
ware design, the use of examples can help designers recognize,
capture, and reuse generalizations, and ultimately enhance the
effectiveness of the products of design [3]. We argue that in
data modeling, examples not only validate a candidate model,
they also support the creative interplay among domain and
technical experts, improving communication and understand-
ing of requirements and stakeholders’ practice and ultimately
improving the usefulness and accuracy of the final model.

3. REQUIREMENTS AND DESIGN
NEMo emerged from the requirements and practices the PADI
project, which attempts to model the psychometrics of the
assessment of inquiry learning by science students [10]. A
primary deliverable of the project is a robust data model for
assessment design, delivery, and scoring; a secondary deliver-
able is a library of exemplars. The PADI team includes nearly
30 members from five educational organizations: SRI Interna-
tional, University of Maryland, University of California at
Berkeley, Lawrence Hall of Science, and University of Michi-
gan. The vast majority of the team members are domain experts
in science education, educational research, assessment, and
instruction. The domain experts were not familiar with UML,
with ontology construction, or with XML schemas.

As the team teleconferenced weekly to discuss models of stu-
dent understanding, they needed a way to manipulate and
compare multiple models and examples in a shared manner.

One of our first tasks was to explore promising data modeling
tools and methods that would support our collaborative ef-
forts to develop a model and library of exemplars. We investi-
gated UML tools Rational Rose and Poseidon, as well as onto-
logical engineering tools such as Protégé. We also experi-
mented with a typical knowledge extraction method in which a
senior engineer presented UML diagrams created in Rational
Rose and solicited critiques from the team. We found that
group members had difficulty understanding the UML nota-
tion and needed an easier way to generate and compare models.

The team members charged with software development sought
to promote the creation of samples for validation and discus-
sion. This approach was also attractive in that it would yield
examples for the eventual PADI library. A Web application,
dubbed “NEMo,” was created to expose a virtual data layer, a
layer of abstraction between the model displayed and the real
database structure. PADI domain experts used this virtual layer
to manipulate the model––the data object definitions and the
interrelations between objects––in addition to entering exam-
ples. NEMo focuses on the manipulation of examples to vali-
date the design under discussion and provide a more accessi-
ble means to understand the design. A Web-based solution was
implemented to leverage team members’ familiarity with Web
forms, navigating Web pages, and refreshing a Web page to
view new information in the shared repository. Using NEMo
editing features, changes to the model could happen during a
teleconference, and all members would see their samples
change to reflect a new design (e.g., a new, empty field showing
up in their sample records). The system also allows the crea-
tion of competing models, along with their own sample re-
cords. Using the system over 18 months, the PADI team created
a data model that encompasses 15 core objects, with numerous
attributes and relations between these objects, as well as sam-
ple instantiations of their use. As of April 2004, 19 team mem-
bers had entered 422 examples into the system.

3.1 NEMo Implementation and Features
Figure 1 shows a sample NEMo editing screen to create a
Movie object with nine attributes. From this screen, team
members can reorder, insert, and delete attributes for an object
(see below for discussion of shared vs. owned attributes). A
team member could create an alternative “Movie” model with
different attributes and thereby design on a parallel track. Fig-
ure 2 shows a populated instance––a sample record in which
data have been entered for a particular movie.

NEMo is a three-tier application based on the free, open-source
Expresso framework (jcorporate.com), which in turn is based
on Apache Struts and uses Java Server Pages technology for
the rendering layer. It employs a simple node-attribute-
relation database schema, which allows all instances to be
handled by the same functions; for example, the code for ma-
nipulating a Movie instance is the same as that for editing a
Person instance. Expresso offers a model-view-controller sys-
tem in which the universe of supported Web requests i s
mapped into a finite-state machine. Expresso includes an ob-
ject-to-relational layer that permits developers to write persis-
tence code in Java only, without explicit SQL. In practice, this
means that our development commonly takes place on desktop
computers running Windows or Mac OS X, using the Hyper-
sonic SQL database, followed by seamless deployment on So-
laris servers using the MySQL database.

Figure 1. A NEMo page allows manipulation of the
 attributes of a “Movie” object.

Figure 2. A Movie instance in NEMo provides fields
 for the input of sample data.

NEMo’s core features include:

• Shared editing and viewing. As a Web application with
server-side data persistence, NEMo offers the potential to
share all its contents (given sufficient permissions), includ-
ing editing rights for the current model and/or the ability to
create a competing model. As model edits are made and
stored in the database, all subsequent views reflect the up-
dates, providing immediate feedback to participants.

• Multiple representations. NEMo represents both models
and examples as a set of Web pages. It currently supports
import/export via XML, and we propose to extend this to in-
clude XML Metadata Interchange and DTD, as well as to im-
plement other visual (tree and graph) representations.

• Shared-relationship attributes vs. owned attributes. When
analyzing a domain, one of the challenges is to identify
first-class objects and relations between them (“shared” at-
tributes in NEMo), as opposed to identifying attributes that
are not separable from the object (“owned” attributes).
Shared attributes are created by relating two objects via
checkbox associations, where the possible candidates are
constrained by the model. Owned attributes are simply ed-
ited and viewed as values within an object. Whether an at-
tribute is shared or owned is debatable; it depends on how
experts view the domain and plan to use the data, and may
change as experts compare and contrast modeling decisions.

• Permissions can be specified per instance (per row). Groups
can be given fine-grained permissions that control reading
and writing on a row-by-row basis, where a “row” in the da-
tabase corresponds to a model instance in NEMo. Further, a
distinction is made between users who have permission t o
edit examples and those who can edit the model itself.

• Menus can constrain attribute values. Objects may contain
attributes that have constrained values (vs. free-form text
entry), and these values will be presented in a menu. Users
with model-editing privileges can dynamically alter the
constraints (the menu items) by editing the model. In re-
sponse, the menus available to model instances will change.

• Special handling is possible via extensions. Attributes that
require custom rendering or special handling for viewing
and/or editing can implement a Java interface for that pur-
pose. This feature provides for the creation of arbitrary
view/edit screens, custom built for a given attribute.

4. CONCLUSIONS AND FUTURE WORK
As various disciplines attempt to standardize the exchange of
information via XML, modeling teams may benefit from a tool
that supports collaborative data modeling. NEMo is a by-
product of an effort by domain experts to collaborate in draft-
ing a coherent data model. It promotes the use of examples,
avoiding UML representations and leveraging the experience
of team members with Web forms and online information shar-
ing. NEMo proved sufficiently malleable within a project at-
tempting to model the psychometrics of assessment design,
and continues to serve as a repository of examples. We are
actively developing additional editing capabilities and navi-
gational aids while expanding the library of examples in the
system. The model has matured and the model-editing func-
tions are gathering dust, but the system now provides a library
of resources as we discuss content and content-creation “wiz-
ards” to scaffold interaction with the system.

Our future work will seek to determine whether our modeling
success is replicable across other domains and to more sys-
tematically contrast tools and processes for designing data
models. Since NEMo is available under an open-source license
(sourceforge.net/projects/emo/), we hope others will adopt and
adapt it for their own uses and share their feedback with us.

5. ACKNOWLEDGMENTS
We thank Geneva Haertel, Robert Mislevy, John Gennari, Chris
Digiano and the PADI team for their helpful suggestions for

NEMo and this paper. This work was supported by Interagency
Educational Research Initiative grant REC-0129331.

6. REFERENCES
[1] Booch, G. Rumbaugh, J., and Jacobson, L. The Unified

Modeling Language user guide. Addison-Wesley, Read-
ing, MA, 1998.

[2] Brown, J. S., & Duguid, P. The social life of information.
Harvard Business School Press, Cambridge, MA, 2000.

[3] Carroll, J. M., & Rosson, M. B. Getting around the task-
artifact cycle: How to make claims and design by scenario.
ACM Transactions on Information Systems, 10(2) (1992).
181-212.

[4] Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and
Glaser, R. Self-explanations: How students study and use
examples in learning to solve problems. Cognitive Sci-
ence, 13 (1989), 145-182.

[5] Damm, C. H., Hansen, K. M., and Thomsen, M. Tool sup-
port for cooperative object-oriented design: Gesture
based modeling on an electronic whiteboard. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems (The Hague, The Netherlands, April 1-
6, 2000). ACM Press, New York, 2000, 518-525.

[6] Domingue, J., Motta, E., Shum, S. B., Vargas-Vera, M., Kal-
foglou, Y., and Farnes, N. Supporting ontology driven
document enrichment within communities of practice. In
Proceedings of the First International Conference on
Knowledge Capture (Victoria, British Columbia, October
21-23, 2001). ACM Press, New York, 2001, 30-37.

[7] Dreyfus, H. What computers still can’t do: A critique of
artificial reason. MIT Press, Cambridge, MA, 1993.

[8] Gennari, J. H., Musen, R. W., Fergerson, W. E., Grosso, M.
C., Crubézy, M., Eriksson, H., Noy, N. F., and Tu, S. W. The
evolution of Protégé: An environment for knowledge-
based systems development. International Journal of
Human-Computer Studies, 58, 1 (Jan. 2003), 89-123.

[9] Hammond, T., and Davis, R. Tahuti: A geometrical sketch
recognition system for UML class diagram. In Proceed-
ings of the AAAI Spring Symposium on Sketch Under-
standing (Palo Alto, CA, March 2002). AAAI Press, Menlo
Park, 2002, 59-66.

[10] Mislevy, R., Haertel, G., and the PADI Research Group.
Design Patterns for Assessing Science Inquiry. Technical
Report PADI-1, SRI International, Menlo Park, CA, 2003.

[11] Schuler, D., and Namioka, A. Participatory Design: Prin-
ciples and Practices. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1993.

[12] Sullivan, K. Preliminary report of the NSF Workshop on
the Science of Design. Department of Computer Science,
University of Virginia, Charlottesville, VA, 2004.
http://www.cs.virginia.edu/~sullivan/sdsis/

[13] Tilley, S., and Huang, S. A qualitative assessment of the
efficacy of UML diagrams as a form of graphical documen-
tation in aiding program understanding. In Proceedings
of the 21st Annual International Conference on Docu-
mentation (San Francisco, CA, October 12-15, 2003).
ACM Press, New York, 2003, 184-19

	Page 1
	Page 2
	Page 3
	Page 4

