
Robert Mislevy
University of Maryland

PADI Technical Report 12 | March 2006

Report Series Published by SRI International

P A D I

PADI | Principled Assessment Designs for Inquiry

A Guide to the PADI
Gradebook

Lawrence Hamel, CodeGuild, Inc.
Robert Mislevy, University of Maryland
Cathleen A. Kennedy, University of California at Berkeley

SRI International
Center for Technology in Learning
333 Ravenswood Avenue
Menlo Park, CA 94025-3493
650.859.2000
http://padi.sri.com

PADI Technical Report Series Editors
Alexis Mitman Colker, Ph.D., Project Consultant
Geneva D. Haertel, Ph.D., Co-Principal Investigator
Robert Mislevy, Ph.D., Co-Principal Investigator
Meredith Ittner and Klaus Krause, Technical Writers/Editors
Lynne Peck Theis, Documentation Designer

Copyright © 2006 SRI International, University of Maryland, and University of California, Berkeley. All Rights
Reserved.

Acknowledgments

This material is based on work supported by the National Science Foundation under grant REC-0129331
(PADI Implementation Grant).
Disclaimer
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

P R I N C I P L E D A S S E S S M E N T D E S I G N S F O R I N Q U I R Y

T E C H N I C A L R E P O R T 1 2

A Guide to the PADI Gradebook

Prepared by:

Lawrence Hamel, CodeGuild, Inc.

Robert Mislevy, University of Maryland

Cathleen A. Kennedy, University of California at Berkeley

ii

C O N T E N T S

Abstract v

1.0 Background 1
2.0 Purpose of Gradebook 2
3.0 Implementation of Gradebook 4

3.1 Navigation 4
3.2 Assessments 4

3.2.1 Validation 6
3.2.2 Scoring Configuration 7
3.2.3 Viewing an Assessment and Its Associated XML 7

3.3 Students 8
3.4 Classes 9

3.4.1 Associating Assessments 12
3.4.2 Associating Students 13

3.5 Scores 14
3.5.1 Viewing Scores 14
3.5.2 Score Entry via Web Forms 15
3.5.3 Importing Scores 16

3.6 Item Bundling 20
3.6.1 Example 20
3.6.2 Design Supplier Support 22
3.6.3 Gradebook Support for Bundling 23

3.7 QTI Format for Scores 24
4.0 Lessons Learned and Future Directions 25

4.1 Visualization and Summarization 25
4.2 Navigation 25
4.3 Co-evolution with the PADI Design System and BEAR Scoring Engine 26
4.4 Network Transfer 26

5.0 Conclusion 28
References 29
Appendix—Technical Information 32

A.1 Database Schema 32
A.2 Request Flow 33
A.3 XML Specification 35

A.3.1 QTI 36
A.3.2 Psychometric XML Plus Scoring Engine Options 37

 iii

F I G U R E S

Figure 1. Purpose of Gradebook: To Combine Design Information with Item Scores to Produce
Estimates 2

Figure 2. Flow of Information in Gradebook 3
Figure 3. Navigation Header 4
Figure 4. List of All Assessments 5
Figure 5. Editing an Assessment 6
Figure 6. Viewing an Assessment 7
Figure 7. Assessment XML Snippet 8
Figure 8. List of Students 9
Figure 9. Adding Students One at a Time via Web Form 9
Figure 10. List of Classes 10
Figure 11. Editing Attributes of a Class 10
Figure 12. Viewing Proficiency Estimates of a Given Class 11
Figure 13. Linking Assessments to a Class 13
Figure 14. Linking Students to Class 14
Figure 15. Viewing Scores 15
Figure 16. Editing Scores 16
Figure 17. Specifying the Source of the Import 16
Figure 18. Confirming Import (Part 1 of 2) 17
Figure 19. Confirming Import (Part 2 of 2) 19
Figure 20. BioKIDS Item 5 Example 21
Figure 21. Design System Screen: Translation Mapping for an Evaluation Phase That Bundles 22
Figure 22. Confirming Import (Partial, Showing Bundled Responses for Item 5) 23
Figure 23. Confirming Import (Viewing Scores) with Bundling Indicated by Parentheses 23
Figure A-1. Database Schema 32
Figure A-2. Model-View-Controller Design 33
Figure A-3. Sample of QTI 37
Figure A-4. Sample of PADI Psychometric XML 38
Figure A-5. Continuation of PADI Psychometric XML Showing Measurement Model 39

iv

T A B L E S

Table A-1. Requests and Rendering Map 34
Table A-2. Annotated Summary of Tags within QTI 36
Table A-3. Annotated Summary of Tags within Psychometric XML 38

 v

A B S T R A C T

The PADI Gradebook is an application created under the Principled Assessment Designs for Inquiry (PADI)

project that combines assessment design information with student response data and employs a scoring

engine to generate estimates of student proficiency. Gradebook supports viewing, editing, and importing of

scores. It supports some simple, automatic evaluation actions on item scores that are part of a bundle of

dependent items, if this bundling is specified in the assessment design. After using the scoring engine to

calculate student proficiency, Gradebook displays a summary of student proficiencies in a graphical

presentation.

Background 1

1.0 Background

In the Principled Assessment Designs for Inquiry (PADI) project, the PADI design system

provides a structure for developing assessment designs with clear rationales. This report

assumes the reader is familiar with PADI concepts such as Student Model Variables, Observable

Variables, Measurement Models, and the scoring engine, as they exist as part of the PADI

project at the time this guide was composed (see Kennedy, 2005a, 2005b; Mislevy &

Riconscente, 2005; Riconscente, Mislevy, Hamel, & PADI Research Group, 2005). Gradebook also

draws on concepts from the four-process architecture1 for assessment delivery (Almond,

Steinberg, & Mislevy, 2002).

Robert Mislevy at the University of Maryland, one of the Principal Investigators of PADI,

directed the creation of a prototype tool that would make use of assessment design

information and the proficiency estimates that result from following such a design. Professor

Mislevy teaches a course within the College of Education, Department of Measurement,

Statistics & Evaluation (EDMS), and imagined a tool that would keep track of students, classes,

and assessments. The resulting prototype is called the PADI Gradebook, referred to as simply

“Gradebook” below. It is an example of a PADI application, a concrete deployment of some of

the abstract concepts and data structures that are contained within the PADI design system.

The scoring engine used by Gradebook was created by a research group at the University of

California, Berkeley, led by Mark Wilson. More information about this scoring engine (also

referred to as the BEAR Scoring Engine) is available from the Web site of that research group

(<http://bearcenter.berkeley.edu/>) and in PADI publications. This scoring engine supports

multidimensional item response theory (IRT) scoring using models that can be expressed as

instances of the multidimensional random coefficients multinomial logit model (MRCMLM;

Adams, Wilson, & Wang, 1997), including the Rasch model for binary items, partial credit and

rating scale models, and bundle models for conditionally dependent item responses. The BEAR

Scoring Engine is a PADI application that implements the MRCMLM to produce estimates of

student proficiencies. This model provides a generalized solution for a family of

multidimensional, polytomous models to produce inferences about student knowledge or

ability from the evidence represented by conditionally independent Observable Variables.

1 The four-process architecture includes one process each for activity selection, presentation, evidence identification, and
evidence accumulation. A central library serves to tie together information from each process. Examinees interact solely with
the presentation process.

2 Purpose of Gradebook

2.0 Purpose of Gradebook

Gradebook combines assessment design information with student scores and employs a

scoring engine to generate estimates of student proficiency. Gradebook is not involved with

the design, authoring, or delivery of assessments. It presupposes that a PADI assessment

design has been created in some separate design-supplying system, and that the assessment

design somehow has been translated into a structured collection of one or more actual

assessment tasks that the instructor has delivered to a group of students. The assessment

design consists of a collection of specifications of materials, procedures, and, of particular

importance to Gradebook, parameters and supporting information for psychometric

measurement models. The location of this collection of task-design models is specified in

Gradebook with a Uniform Resource Locator (URL). Any system can supply the design

information as long as it follows the prescribed PADI XML format, supplied via the Web’s

standard Hypertext Transfer Protocol (HTTP). At the time of writing, all experimentation has

been done with a single design supplier, the PADI design system.

Thus, in the first step of the logical flow of information in the Gradebook process, the instructor

specifies a URL for the assessment design models. Gradebook retrieves and stores the

assessment design models from the design-supply system into the Gradebook database, as

represented by the first box within Figure 1. This first box is labeled “PADI Assessment Design”

and includes shapes to represent the assessment design models.

Figure 1. Purpose of Gradebook: To Combine Design Information with Item Scores to

Produce Estimates

The second box within Figure 1 is labeled “Students’ Item Scores” and represents instructors’

scores for student performance (i.e., item scores, or, in more formal PADI terms, values of

Observable Variables, for any number of students taking a given assessment). Gradebook

makes no assumptions about assessment delivery or the evaluation of students’ work that

produced item scores. The mode of delivery could have been paper and pencil, computer-

based, or oral; evaluations could have been automated or based on human judgment. In any of

these cases, the resulting item scores can serve as input to Gradebook.

The third box in Figure 1 represents a request sent to the scoring engine (a separate system).

Essentially, information from the PADI design system for assessments is combined with

students’ item scores and then sent to the scoring engine. The scoring engine produces

estimates of student proficiency based on these Measurement Models and item scores.

Finally, the circle on the right of Figure 1 represents these proficiency estimates, which are

returned from the scoring engine to Gradebook. Gradebook stores the estimates and presents

a summary display suitable for an instructor. In other words, Gradebook does not itself

Purpose of Gradebook 3

calculate estimations of proficiency, but relies on a service provider for this calculation. The

interface with the scoring engine is defined in XML and uses the HTTP protocol, so Gradebook

can interact with any provider of scoring calculation that implements the proper XML-over-

HTTP interface. At the time of writing, all experimentation has been done with a single scoring

engine, the BEAR Scoring Engine (Kennedy, 2005a).

Figure 2. Flow of Information in Gradebook

The representation of information flow in Figure 2 shows that Gradebook exchanges

information with screens and external processes. The top of Figure 2 indicates a supplier of

assessment design information in XML format (the PADI design system, in our experience). At

the bottom of Figure 2, the two ovals indicate the display screens that instructors employ to

retrieve and supply information. On the left, the cylinder shape represents the database used

by Gradebook to store design XML and student scores. On the right, the box labeled “Scoring

Engine” represents the separate process that Gradebook employs to update student

proficiency estimates. The Scoring Engine communication channel uses the Question and Test

Interoperability (QTI) XML format for student scores (IMS Global Learning Consortium, 2000),

combined with other assessment design XML, hence the label “QTI+” used in the arrow

connector between Gradebook and the Scoring Engine.

4 Implementation of Gradebook

3.0 Implementation of Gradebook

In this section, we review the major aspects of the Gradebook implementation, starting with

the Navigation bar and proceeding with descriptions of the major components of Gradebook:

classes, students, and assessments. Additionally, Section 3.5 discusses scoring in more detail,

and Section 3.6 describes the “bundling” of scores that can accommodate dependent items.

Following this discussion of implementation, Section 4 discusses the lessons learned thus far

with the existing Gradebook installation.

3.1 Navigation

Classes, students, and assessments are the core of the Gradebook system. The main links in the

Gradebook header, as shown in Figure 3, will transport the instructor to the home page or to

appropriate lists of classes, students, or assessments, respectively.

Figure 3. Navigation Header

Robert Mislevy supervised the development of Gradebook and was the first customer; hence

the Maryland logo and EDMS prefix in the header. There is also a login/logout link in the upper

right corner, as shown in Figure 3. Logging in is optional, but only logged-in instructors have

editing capabilities. Universal read-only access was deemed desirable for guest users of the

prototype.

3.2 Assessments

An assessment in Gradebook is defined by a title, a URL, and some information about scoring

methods. Any number of assessments can be added to Gradebook, and each of them will show

up on the master list of all assessments. An assessment can be associated with any number of

classes whose instructors choose to use the assessment. Associations between assessments

and classes are discussed in Section 3.4.

Implementation of Gradebook 5

Figure 4. List of All Assessments

In Figure 4, five assessments are listed. For each assessment, instructors can view more

information, edit the information (assuming they have sufficient permissions), delete the

assessment, or see the full design information. Selecting the latter option accesses the

assessment information within the original design supplier’s database, following the URL

specified by the instructor when the assessment was originally defined in Gradebook.

The names of the assessments in this example reflect some of the research goals and partners

of the PADI project. There are three BioKIDS assessment variations, each employing a different

Student Model with a different number of Student Model Variables (dimensions). BioKIDS is an

implementation site for PADI (Songer et al., in press). Another partner is the University of

Maryland EDMS department. Professor Mislevy kindly volunteered to describe his EDMS 738

seminar as a template in the PADI design system, which was subsequently used to test

Gradebook importation of assessment design information. At the bottom of Figure 4, there is

an assessment for FOSS, another implementation site (Long & Kennedy, in press).

The main work of designing an assessment is done in an external assessment-designing

application, such as the PADI design system. Gradebook retrieves the task-design models from

the design supplier in XML format by accessing a URL specified as part of the Gradebook

assessment definition, as shown in Figure 5. Gradebook stores this XML file when the

assessment is initially defined in Gradebook; subsequent changes made by the design supplier

will not automatically impact Gradebook unless the instructor using Gradebook indicates that

the task-design models should be updated. Updating can be accomplished by checking the

Re-import box shown in Figure 5, but this is again a one-time change. This approach allows for

the original assessment design to be changed without threatening ongoing usage of a

consistent design by Gradebook.

6 Implementation of Gradebook

Figure 5. Editing an Assessment

Gradebook communicates with the design supplier by means of simple HTTP requests and

expects a well-defined XML document in return. Information flows from the design supplier to

Gradebook in one direction only; Gradebook does not write any information to the design

supplier.

3.2.1 Validation

Gradebook requires assessment design models (represented as XML documents) to exhibit

certain qualities. These qualities are validated when the instructor indicates that an assessment

should be downloaded from the design supplying application. The qualities for validation all

concern the XML document’s adherence to the structure of the PADI design models (see

Riconscente, et al., 2005, for a full description of the PADI design models).

Gradebook downloads and validates the design model XML from a URL and assures that:

 The type of container object is a template or task specification.

 Exactly one Student Model contains all Student Model Variables (SMVs).

 All SMVs referenced by Measurement Models are defined within the Student Model.

 There is at least one Activity or at least one nested template or task specification (nested

items are also validated, recursively).

 Any (optional) Measurement Models found contain exactly one Observable Variable (OV).

Implementation of Gradebook 7

 Any (optional) intermediate OVs found have a proper reference to a final OV.

The XML is parsed into its constituent parts in order to validate this information, and the

various parts of the design are stored separately within the database schema described in the

Appendix.

3.2.2 Scoring Configuration

In Figure 5 about editing an assessment, the attributes at the bottom of the screenshot

concern how the assessment will be handled by the scoring engine. First, there is the

“Estimation Method.” The scoring engine allows two options for the estimation method: EAP

and MLE, which are acronyms for “expected a posteriori” and “maximum likelihood estimation,”

respectively. See psychometric references such as Baker (2001), Kennedy (2005a), Lord (1980),

Van der Linden and Hambleton (1996), and Wu, Adams, and Wilson (1998) for discussions of

these statistical methods. Second, the entry for “Code for Missing Items” allows the

specification of how missing data will be indicated. The scoring engine differentiates missing

data from “0” scores. The default representation of a missing score is a blank field. However, it

may be easier for humans to spot missing data if a specific code is used rather than just an

omission (e.g., searching for “NO_ANSWER” is easier than trying to spot where some data are

omitted entirely). For this reason, the scoring engine also is able to accommodate a specific

code to designate missing data. The default value for this code is empty, to indicate that no

special code should be used.

3.2.3 Viewing an Assessment and Its Associated XML

The assessment view page, shown in Figure 6, displays the attributes already discussed and

offers some action links in the upper right corner.

Figure 6. Viewing an Assessment

The link in the upper right corner allows instructors to view some of the XML that will be sent

to the scoring engine. A sample of that XML is shown in Figure 7.

8 Implementation of Gradebook

Figure 7. Assessment XML Snippet

In this snippet, the second through sixth lines have to do with options like the estimation

method. In this instance, MLE (maximum likelihood estimation) is stipulated. After that, the

Student Model element is specified, as provided by the design supplier. Although individual

scores on each item for each student must be sent to the scoring engine, specifications for the

Student Model and item parameters will be included just once in a request to the scoring

engine, since these values are assumed to be the same for all of the students. In this way, the

protocol is efficient, allowing unchanging design information to be transmitted once per

request. More detail on the XML specification is given in the Appendix.

3.3 Students

In Gradebook, student records are simple data structures, including just a name, ID, and

optional description. Students can be added individually via a Web form, or a group of students

may be added at one time by importing a set of scores, as described in Section 3.5.

Implementation of Gradebook 9

Figure 8. List of Students

In Figure 8, the students were entered with only an ID like “BK3F070103,” so Gradebook treats

the ID as the name of the student.

Adding an individual student is straightforward. Clicking on the “add” link in the Student List

screen yields the entry screen shown in Figure 9.

Figure 9. Adding Students One at a Time via Web Form

All students entered into Gradebook can be associated with any number of classes. A student

identity need be entered only one time. Making associations between students and classes is

described in the next section.

3.4 Classes

In Gradebook, classes are the data structures where students and assessments are associated. A

student can be a member of multiple classes. An assessment also can be reused in different

classes. It is assumed that all the students who are members of a class should be included in all

10 Implementation of Gradebook

assessments associated with the class, although a student can have empty scores for a given

assessment.

Figure 10. List of Classes

Three classes are shown in Figure 10, all examples that were created for research purposes. An

instructor can create and edit classes by using the links shown on this page. Editing a class

yields a page like that shown in Figure 11.

Figure 11. Editing Attributes of a Class

As shown in Figure 11, the definition of a class includes an instructor, a name of the class, and

some other attributes. The important functionality of the class is in how it associates students

with assessments, as provided by the links in the upper right corner of Figure 11.

Implementation of Gradebook 11

Before we discuss the association procedures, consider the main display screen for a class,

shown in Figure 12. For the main screen, Gradebook displays the proficiency estimates of all

the students in the class. Gradebook could choose to just display scores as the main screen, but

Gradebook assumes that instructors want to know the proficiency estimates that take into

account all the responses of the students. In Figure 12, the histogram shows a summary of the

class as a whole and has estimates for individual students at the bottom. In order for this kind

of display to be generated, the instructor already has associated students with this assessment,

provided scores for the students, and indicated that the scoring engine should calculate

proficiencies. In other words, the main screen for viewing estimates is a result of many other

steps, but it is also the view of most interest, assuming an instructor wants to see the

proficiencies of students, not the individual item scores they received.

Figure 12. Viewing Proficiency Estimates of a Given Class

In the screenshot of Figure 12 (cropped to focus on just one assessment), the fictitious

instructor Munira Jones has given an assessment referred to as “BioKIDS unidimensional” to her

students who are indicated by IDs BK3F070103, BK3F070104, and so on, at the bottom.

12 Implementation of Gradebook

A histogram summarizes the proficiencies in the class, graphing the range between -3 and 3.

The units here are logits, a scale that is commonly used to report cognitive measurement data.

The logit scale (technically, the “Log-Odds Unit” scale) is an equal interval scale. If the model

holds, we can say that the difference in proficiency between a person with an estimate of 2 and

a person with an estimate of 1 is the same as the difference between a person with an estimate

of 3 and a person with an estimate of 2. In addition, the difference between 2 and 1 is twice as

large as the difference between 3 and 2, with respect to suitably transformed2 probabilities of

correct responses to all the items in the domain. This differs from “percent correct” test scores,

for which we cannot say that a person earning a score of 80% has twice as much knowledge as

a person earning a score of 40%. The difference in the number of correct items for a person

earning 80% compared with a person earning 40% is the same as the difference for a person

earning 50% compared with a person earning 10%, in terms of percentage of correct

responses. This does not necessarily mean that 80% correct represents twice as much

knowledge or proficiency as 40% correct, nor that the difference between 80% and 40%

represents the same difference in meaning or proficiency as the difference between 50% and

10%. Logits, on the other hand, are additive in the same way that inches are. A difference of 1

logit on a particular knowledge scale refers to the same difference in proficiency, regardless of

which particular items a student may have completed, or which students were used to initially

calibrate the scale.

Individual student estimates are available as decimal numbers in each student’s row (see the

bottom of Figure 12). Each student’s proficiency estimate is also indicated as a tick on a line

graph with a blue bar representing the standard deviation. For example, the first student,

BK3F070103, has a proficiency estimate of 0.28, with a standard deviation of 0.29 on that

estimate. The scale for the individual line graphs is the same as that used with the histogram.

3.4.1 Associating Assessments

Figure 13 illustrates how assessments are associated with a class by checking the appropriate

boxes.

Checking the box indicates that the assessment is associated with the target class. In Figure 13,

three assessments are associated with Ms. Jones’ class, while six other assessments are not.

Associating an assessment with a class implies that all students in the class will take the

assessment, although students may have empty scores for some or, occasionally, all items on a

given assessment.

2 Specifically, logit transformations: logit(p) = ln((p/(1-p)).

Implementation of Gradebook 13

Figure 13. Linking Assessments to a Class

3.4.2 Associating Students

Students can be associated with classes in two ways: by an instructor’s checking a box to

associate individual students, as displayed in Figure 13, or in a more automated fashion, as

described in Section 3.5.3 on importing scores.

14 Implementation of Gradebook

Figure 14. Linking Students to Class

The top portion of the screenshot in Figure 14 shows several students associated with the class.

In the subsequent pages, indicated by page links in the upper right of the figure, all students

known to Gradebook are available for joining the class. A check box indicates whether or not

each individual student is associated with the target class. A search function for particular

students would be helpful here, rather than the multipage “browse” metaphor presented.

However, the typical use case is to associate students with a class automatically during

importation of scores, as described in Section 3.5.3.

3.5 Scores

The PADI design framework and design objects use the concept of Observable Variable to refer

to an evaluated aspect of a student’s performance. This is a generalization of the more familiar

concept of an item score or, even more simply, a score. These are to be distinguished from test

scores, commonly sums or percents-correct over several items. Gradebook calls the scoring

engine to calculate IRT proficiency estimates to characterize students’ performance across

items.

3.5.1 Viewing Scores

Similar to the view of all the proficiency estimates of students in the class, Gradebook provides

a view of all the scores for all students in the class for a given assessment, as shown in Figure

15.

Implementation of Gradebook 15

Figure 15. Viewing Scores

In this figure, each student has a row that displays the scores for individual items within the

assessment, with each item in a separate column. For example, the first student, BK3F070103,

has a score of 1 for the item “BioKIDS pre/post item 1” and also scores of 1 for the second and

third items. The parenthetical numbers for the fourth, fifth, and sixth items have to do with

item bundling, which is discussed in Section 3.6.

Not visible in Figure 15 are two links: one for exporting the scores as a text file and the other for

viewing scores as XML. The XML format is discussed in the Appendix.

3.5.2 Score Entry via Web Forms

Instructors can enter or edit a score for a given student on a given item on a given assessment

in a given class, as shown in Figure 16.

16 Implementation of Gradebook

Figure 16. Editing Scores

Score entry is limited to the range of possible answers via menu choice. In the item labeled

“BioKIDS pre/post item 3” in Figure 16, three answers are possible: no response, 0 for incorrect,

and 1 for correct.

3.5.3 Importing Scores

Instructors can import scores by uploading a tab-delimited file, as illustrated in Figure 17.

Figure 17. Specifying the Source of the Import [change extension to txt]

Implementation of Gradebook 17

This feature facilitates the use of a local spreadsheet to enter student scores at the instructor’s

convenience, offline. The spreadsheet contents can be uploaded via a Web page. In order to

validate the format of the incoming data, a confirmation screen is presented before the

indicated file is saved into the database. This confirmation step allows Gradebook to offer

several features to the instructor, including a means to reorder the data, create identification

numbers for new students, or link existing students to the given class. In order to accomplish

these multiple tasks on one screen, the confirmation page is relatively detailed. An explanation

of the potential for data reordering is included at the top of the confirmation page, as shown in

Figure 18.

Figure 18. Confirming Import (Part 1 of 2)

18 Implementation of Gradebook

As explained in the text within Figure 18, the confirmation screen allows an instructor to

change the order of Observable Variables (OVs) that are found in the assessment design

models to match the incoming data. The default ordering may suffice in many cases.

The tutorial in Figure 18 is the top part of a detailed page that is further excerpted in Figure 19,

which shows an abbreviated image with the OV mapping at top and student identification at

bottom. As the explanation of Figure 18 states, the mapping of student responses to OVs is

accomplished by manipulating, as necessary, a menu of OVs that includes all the OVs defined

for the assessment design models. In Figure 19, the default mapping is correct. The import file

has its responses in the order expected by the design. The label of the first response, “1,”

corresponds to the menu choice “BioKIDS pre/post item 1 (563).” The “(563)” in the OV title is

the ID of the OV, appended by the system to the display label for the OV. In Figure 19, two

columns of sample student scores are shown on the right for the first two students in the data

set. In our sample data, the first two students have IDs BK3F270101 and BK3F270102, so their

scores are shown in the right-hand columns as a sample of the actual responses found in the

import file.

At the end of the OV-mapping menus, there are some unused data items, indicated by “Not

Used.” For example, response 19 in the imported data set is marked this way, indicating that

there is no OV for this response. The importer will ignore response 19.

Implementation of Gradebook 19

Figure 19. Confirming Import (Part 2 of 2)

Furthermore, the import confirmation screen allows instructors to define students and class

membership during the importation. The bottom of Figure 19 includes a list of student IDs with

three columns of potential actions. In our sample situation, all of the student IDs in the import

file already are known by Gradebook and already are linked to this class (e.g., from a previous

assessment). Thus, only one of the columns, labeled “Student already in class,” is populated

with check boxes. The instructor typically follows the default here, using the data for all student

IDs found in the import file.

20 Implementation of Gradebook

In general, when Gradebook sees a student ID in an import file, there are three possible cases:

1. The student is unknown.

2. The student is known in Gradebook but is not a member of this class.

3. The student is already a member of this class.

For each of these cases, Gradebook can either use or ignore the student’s data, so it offers a

check box in the (only) appropriate column, corresponding to the correct case for the given

student. Gradebook offers a checked box by default, assuming that data from all students

should be used. Unchecking the box will cause Gradebook to ignore that particular student’s

scores.

In this example, student BK3F270101 is already known by Gradebook, so there is no need to

show a check box in the left-most column for adding this student to Gradebook. Similarly, this

student is already a recognized member of the class, so there is no need to offer a check box in

the middle column to link this student to the class. Finally, there is a check box in the third

column because it is appropriate to offer the instructor inclusion/exclusion choices about this

student, who is already a member of the class. By leaving the “in class” box checked, the

instructor indicates that the data for student BK3F270101 should be used to estimate the

proficiency.

3.6 Item Bundling

Importing scores becomes complicated when there are local dependencies among the items in

an assessment. Dependencies arise when two or more student responses are somehow tied

together: student performance on one item is not independent of performance on the other.

This can occur, for example, when a single stimulus elicits multiple responses that are scored

individually.

3.6.1 Example

For an example of conditional dependencies, consider the prompt for item 5 from BioKIDS,

shown in Figure 20.

Implementation of Gradebook 21

Figure 20. BioKIDS Item 5 Example

Note: For information on the BioKIDS project, see <http://www.biokids.umich.edu/>.

BioKIDS item 5 presents a graph and asks students to both fill in a blank for “zone” (with either

“A” or “B” as an answer) and also to finish the sentence with a constructed response. BioKIDS

terms the first part of the response the “claim” (identifying the zone) while the second part is

termed the “evidence” (providing evidential reasoning with the word “because…”).

The two responses are elicited from the same data and therefore are related to one another.

For example, giving an incorrect claim is positively associated with also providing an incorrect

explanation; the probability of giving a correct explanation is related to the probability of

giving a correct claim. Thus, these two responses are conditionally dependent.

Several approaches to modeling conditional dependence appear in the psychometric

literature. One approach that the BEAR Scoring Engine can accommodate is that of “bundling”

conditionally dependent sets of items, and this technique also provides for associations more

complicated than conditional independence (Wilson & Adams, 1995). From the perspective of

the four-process architecture for assessment delivery, bundling means creating values of new

observable variables from the patterns of scores across a set of conditionally dependent items.

Thus, bundling is simply an additional step of item-level scoring.

5. Using the graph below, predict which zone most likely has a tree in it and give one
reason to support your prediction.

Schoolyard Animals

0

5

10

15

20

25

Zone A Zone B

N
um

be
r

of
 A

ni
m

al
s

Squirrels
Birds
Ants
Pillbugs

I think that zone ____________ has a tree in it because

22 Implementation of Gradebook

3.6.2 Design Supplier Support

A design supplier can support response dependencies by indicating that the dependent

responses should be bundled together during evaluation. Bundling makes a single, combined

score out of multiple response scores. For example, in the BioKIDS item 5 example with two

responses elicited by one stimulus, assume that the first response is judged right or wrong (1 or

0) while the second short essay response is rated on a scale from 0 to 2. Combining these two

response scores implies that there will be two possibilities for the first response multiplied by

three possibilities for the second response, yielding six possibilities. The bundled response

score would scale from 0 to 5. In practice, however, the designer may eliminate some of these

possibilities. For example, it is unlikely for a student to get a zero on the claim response, and

then somehow get high marks for the explanation response. The designer may be able to

eliminate (collapse) several of the six possible (combined) score categories after an analysis of

student response patterns. This is a calibration exercise, using good judgment of how a given

pattern of responses should be interpreted, noting in calibration data where few occurrences

of a particular pattern might support collapsing one category into another.

A design supplier allows a designer to stipulate just how the permutations of a bundling

evaluation should be handled—how the Output Observable Variable (also called the final OV)

should be calculated from the Input Observable Variables (also called intermediate OVs). In

Figure 21, an evaluation phase that does bundling is displayed.

Figure 21. Design System Screen: Translation Mapping for an Evaluation Phase

That Bundles

Note: This is a screenshot from the PADI design system, not Gradebook.

On the right of Figure 21, an output (final) OV has six possibilities (0–5), and on the left are six

permutations of intermediate OVs. This figure shows a one-to-one mapping. No categories

were collapsed in this example. However, consider that getting the claim correct with no

Implementation of Gradebook 23

explanation could be construed by some designers as meaning the student was guessing,

which would be equivalent to the first category of 0,0. Thus, there is an argument to collapse

the intermediate OV combination described on the fourth row. The intermediate (1,0) category

could be collapsed to the final OV category 0. In that case, Gradebook would not need final

category 3, and the number of categories would be reduced from a total of six to a total of five.

3.6.3 Gradebook Support for Bundling

Gradebook receives the bundling information shown in Figure 21 as part of the design models

of the assessment and understands that it should expect separate scores for separate

responses from students. Gradebook knows it should perform the action indicated in the

bundling evaluation phase by combining the separate responses into a single bundled score.

Thus, Gradebook automatically conducts a simple mapping—a repetitive task at which

computers excel. (An alternative design supply system could choose to hide the mapping from

Gradebook, effectively turning off any evaluation actions in Gradebook.)

The import confirmation screen offers feedback about the bundling it has perceived, as shown

in Figure 22, which is a snippet out of the same page shown in Figure 19.

Figure 22. Confirming Import (Partial, Showing Bundled Responses for Item 5)

Here there are two parts to BioKIDS item 5. In the imported data file, the columns are labeled

“5Claim” and “5Evidence,” while the appropriate input OVs are shown in the menu choice.

From the design models, Gradebook knows that item 5 requires bundling and shows the

appropriate (intermediate) OVs to accept raw scores from the instructor.

After confirming the import format, instructors view the scores they imported, as shown in

Figure 23.

Figure 23. Confirming Import (Viewing Scores) with Bundling Indicated by Parentheses

24 Implementation of Gradebook

There are no intermediate OVs shown; only final OVs appear. For example, in the final OV

labeled as “BioKIDS pre/post item bundled OV 5,” Gradebook has combined intermediate

inputs mentioned above into a single and final, bundled OV. In this OV 5 for the student

BK3F070103, the student receives a score displayed as “5 (1, 2),” which is a way of saying that

the bundled score is 5, as a result of getting a score of 1 on the first intermediate OV and 2 on

the second intermediate OV. The parenthetical information is solely for reassuring instructors

about how the mapping was done. The results passed on to the Scoring Engine contain only

the single, bundled score.

3.7 QTI Format for Scores

To communicate with the scoring engine, Gradebook must assemble scores into a Question

and Test Interoperability (QTI) XML document as specified by IMS Global Learning Consortium,

Inc. (2000). The QTI specification provides a standard means to transport assessment responses

from one learning-management system to another. By using a standard protocol, the designers

of Gradebook intended to foster interoperability and open standards.

In addition to the QTI document for student responses, Gradebook also reformats some of the

assessment design information it gets from the design supplier. QTI does not accommodate

psychometric information like Student Models or Measurement Models, so this information is

transmitted in a separate XML document specified by the PADI project, as described in the

Appendix.

Lessons Learned and Future Directions 25

4.0 Lessons Learned and Future Directions

4.1 Visualization and Summarization

In early versions of Gradebook, estimates of student proficiencies were presented in a table of

fractional numbers. For each student, Gradebook listed a proficiency estimate and a posterior

standard deviation. These numbers are still part of the current display, but a simple line graph

has been added to provide a different representation of the same information. Team members

suggested aligning individual line graphs vertically for comparison purposes and presenting a

summary of group performance in a histogram, so these features were added. In the future,

usability studies could indicate the advantages and disadvantages of these displays versus

others.

It would be easy to imagine graphical presentations of student performance over time. Like

stock charts, such presentations could have all sorts of interesting statistical analyses. But a

longitudinal presentation presupposes the measurement of the exact same Student Model

Variables (proficiencies) using different assessments, as defined operationally by common

items with the same item parameters across occasions. Gradebook is able to produce student

estimates under these conditions, using the item parameters with which it is supplied. The

responsibility for calibrating item parameters and maintaining a common scale across

occasions is beyond the scope of Gradebook. A common situation for having identical Student

Model Variables is to reuse an assessment as a pre- and posttest.3 In this pre- and posttest

situation, some graphical indication of student progress would be useful and could be

something as simple as ornamentation (font color, typeface, etc.) of the student’s name. As

another improvement, we could keep track of whether students progress on different exams

(i.e., progress or not) without calibrating the different exams against each other. In other words,

we could provide graphical information about how often a student did better on a posttest

compared with a pretest across various assessments (that included pre- and posttests) during

the year.

Comparisons of groups who take the same assessment could be supported, either as

subgroups within a class or as different classes. In the former case, it would be useful to allow

the instructor to indicate contiguous zones within the range of a given Student Model Variable

for a given assessment and given group of students. Each zone could be defined as a discrete

proficiency level, and, for high-stakes situations, the zones could become the categories or

grades for students. Among different classes, it might be useful to overlay histograms or

otherwise provide comparison tools for graphical comparison between classes.

4.2 Navigation

The current navigation scheme is functional but could be improved. For students and

assessments, the administration pages follow the simple pattern described by verbs like “view,

edit, add, create, delete.” In other words, viewing and editing information about a student’s

scores or an assessment are relatively straightforward processes.

3 There are psychometric models that entertain the possibility of different student models at pretest and posttest, since
differential patterns of learning may have introduced distinguishable dimensions in the data at the posttest that were not
there at the pretest, or vice versa. See related work by Susan Embretson (Embretson, 1991).

26 Lessons Learned and Future Directions

Classes, however, are more complex in that they associate students with assessments. Classes

also encapsulate the scores of students when they take an assessment, and they encapsulate

estimates of proficiencies. The complexity starts showing up in navigation. In the list of classes,

there is a link for editing a class that leads to an editing screen for a simple data structure that

includes the class name and instructor’s name. But unlike lists of assessments and students, the

list of classes does not have a simple “view” link. If it did, would we expect a view of estimates

or a view of scores? Assuming that an instructor will be interested in seeing estimates of

student proficiency much more than seeing “raw” scores for students, we offer a link to “view

estimates” for each class in the list of classes and no link for viewing all the item scores. So

unlike more simple lists of students and assessments, the list of classes has a different result

when clicking on “edit” versus “view.” The “view estimates” link leads to a page that has

estimates for all the assessments in the class, and from there, a link is provided to see the scores

on which the estimates were based.

By presenting fewer choices, we avoid some complexity in the listing. For example, if a class has

20 assessments, we now provide just one link. If we were to present links for individual

assessments, we would need 20 links (or 40 links if we included links to both the estimates and

the raw scores) in a row for the class within the list of classes.

On the other hand, our current practice means, in this hypothetical case, presenting 20

histograms and the results for each individual student on a single page. That is too much

information, and it would be slow to download and render. For more robust and generalized

use, this assumption would need to be revisited. There may be a better way to provide

navigation for classes, balancing the need for simplicity with the demands of a complex data

set and Web page limitations.

Without a doubt, the major omission in navigation is the lack of a search function. Only

browsing is provided currently. Again, a robust and generalized Gradebook would require

functions to both search and browse.

4.3 Co-evolution with the PADI Design System and BEAR Scoring Engine

As described in Section 3.5.3, Gradebook benefited from features for bundling found within the

PADI design system. This was a result of co-evolution of the two applications. When it became

clear that bundling of dependent responses required the mechanical application of certain

evaluation rules to a large set of data, and graduate students were spending hours

transforming the data without any systematic check on accuracy, Gradebook was the obvious

choice for automating the evaluation. However, Gradebook could only automate the

evaluation if it knew the rules by which to evaluate student performance, which were not

captured anywhere in a formal way. Adding the evaluation rules to the PADI design system was

a significant task. In a similar way, Gradebook evolved with the scoring engine, establishing a

communication protocol and a data dictionary as both systems were constructed.

4.4 Network Transfer

The protocol between Gradebook and the Scoring Engine is documented as part of the Scoring

Engine (Kennedy, 2005a). Gradebook is only one of the clients of the Scoring Engine. Originally,

a simple HTTP POST was used to transmit the two XML documents required by the Scoring

Engine. However, data sets for large groups of students took several minutes to transmit. It

Lessons Learned and Future Directions 27

became clear that optimization was needed. So the scoring engine protocol was adapted to

allow multipart forms that included compressed files. Compressing the XML files yielded over

95% reduction in size and a corresponding reduction in network transmission time.

Looking forward, the protocol should probably become a kind of Simple Object Access

Protocol (SOAP) transaction in order to present a more standard protocol. Gradebook should

also get some features for exporting and printing estimates and scores.

28 Conclusion

5.0 Conclusion

Gradebook is only a research prototype, with many shortcomings. However, it serves as a proof

of concept that PADI assessment design models can lead to estimates of student proficiencies.

Although a scoring engine is required for the core statistical calculations, Gradebook serves to

simplify the conversion of model information and score information into the format required

by the scoring engine. Furthermore, Gradebook can assist with minor evaluation tasks, and it

presents proficiency estimates in a graphical format for easier comprehension by instructors.

References 29

References

Adams, R., Wilson, M. R., & Wang, W. C. (1997). The multidimensional random coefficients

multinomial logit model. Applied Psychological Measurement, 21, 1–23.

Almond, R. G., Steinberg, L. S., & Mislevy, R. J. (2002). Enhancing the design and delivery of

assessment systems: A four-process architecture. Journal of Technology, Learning, and

Assessment, 1(5). Available at <http://www.bc.edu/research/intasc/jtla/journal/v1n5.shtml>

Baker, F. (2001). The basics of item response theory. College Park, MD: ERIC Clearinghouse on

Assessment and Evaluation, University of Maryland.

Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and

change. Psychometrika, 56, 495–516.

Hamel, L., & Schank, P. (2005). Participatory, example-based data modeling in PADI (PADI

Technical Report 4). Menlo Park, CA: SRI International.

IMS Global Learning Consortium, Inc. (2000). IMS Question & Test Interoperability specification: A

review (White Paper IMSWP-1 Version A). Burlington, MA: Author. Retrieved May 1, 2004, from

<http://www.imsglobal.org/question/whitepaper.pdf>

Kennedy, C. A. (2005a). Constructing PADI measurement models for the BEAR Scoring Engine (PADI

Technical Report 7). Menlo Park, CA: SRI International.

Kennedy, C. A. (2005b). GradeMap v4.0 user guide [Computer software manual]. Berkeley, CA:

Berkeley Evaluation and Assessment Research Center, University of California. Retrieved August

30, 2005, from <http://bearcenter.berkeley.edu/GradeMap/docs/UserGuide4_0.pdf >

Long, K., & Kennedy, C. (in press). Designing FOSS inquiry assessment tasks: An example of forward

engineering using the PADI design system (PADI Technical Report 19). Menlo Park, CA: SRI

International.

Lord, F. M. (1980). Application of item response theory to practical testing problems. Hillsdale, NJ :

Erlbaum.

Mislevy, R. J., & Riconscente, M. M. (2005). Evidence-centered assessment design: Layers,

structures, and terminology (PADI Technical Report 9). Menlo Park, CA: SRI International.

Riconscente, M., Mislevy, R., Hamel, L., & PADI Research Group. (2005). An introduction to PADI

task templates (PADI Technical Report 3). Menlo Park, CA: SRI International.

Songer, N. B., Gotwals, A. W., Bao, H., Haertel, G., Hamel, L., Kennedy, C., et al. (in press). An

illustration of PADI design capability in the BioKIDS project (PADI Technical Report 13). Menlo

Park, CA: SRI International.

Van der Linden, W. J., & Hambleton, R. K. (Eds.) (1996). Handbook of modern item response theory.

New York: Springer.

Wilson, M., & Adams, R. J. (1995). Rasch models for item bundles. Psychometrika, 60, 181–198.

30 References

Wu, M. L., Adams, R. J., & Wilson, M. R. (1998). ACER ConQuest: Generalized item response

modelling software manual [Computer software manual]. Melbourne, Australia: Australian

Council for Educational Research, Ltd.

A P P E N D I X

Technical Information

32 Appendix—Technical Information

Appendix—Technical Information

A.1 Database Schema

Figure A-1 presents the database schema, which indicates how assessments, students,

observables, and all the related details are stored.

Figure A-1. Database Schema

Classes (“gbclass,” lower left), students (“gbstudent,” lower right) and assessments

(“gbassessmentdef,” upper left) are the primary entities with many foreign keys tied to them.

Membership tables (gbclassmembership, gbclassassessments) associate students and

assessments with classes.

ID

ID

ID

Appendix—Technical Information 33

When assessment designs are downloaded as XML files, those files are parsed for Student

Model Variables (smvar) and Observable Variables (observablevar). Again, association tables

(assesssmvs, assessobserv) make explicit the relations among assessments in their Student

Model Variables and Observable Variables, respectively. Student scores (score) are duly

recorded during manual scoring, as well as automatically during file import. After a request to

the scoring engine, estimates of proficiency (postestimate) are stored for each student for each

Student Model Variable.

In the middle of the schema, Observable Variables must be one of two types, intermediate or

final. Intermediate Observable Variables are bundled together as described in Section 3.5.3 of

the main text. Such intermediate observables are bundled to derive a score for a final

observable, and the associations between intermediates and finals are duly recorded

(observdepend) when the assessment design is parsed.

Finally, most observables have categories that are stored (observcategory) in order to provide a

menu for manual input and also validate imported scores.

A.2 Request Flow

To show the flow of requests, a flow diagram and table are pictured in Figure A-2. A Unified

Modeling Language (UML) diagram would be largely uninformative because Gradebook is

based on a Web application framework called Expresso (available at

<http://www.jcorporate.com/econtent/Content.do?state=template&template=2&resource=636>),

wherein data model objects are directly related to the database entities shown in the database

schema. In other words, the UML for data model objects would be redundant, given the entity

definitions in the schema.

Furthermore, the flow of requests through the Controller subclasses of Expresso is better

demonstrated as a simple, finite state machine. Expresso is based on a model-view-controller

design with dispatching to states determined by URL parameters.

Figure A-2. Model-View-Controller Design

In Expresso, the view layer is accomplished with JavaServer Pages (JSP) technology, and the

model is accomplished with an object-relational layer called DBObjects that communicates

with the database.

34 Appendix—Technical Information

The dispatching and control logic is accomplished with Java servlet technology as

implemented in subclasses of the Controller class in Expresso. The Expresso framework

implements a finite state machine where one state in the machine is fully described by a

Controller (the file part of a URL) and an HTTP parameter called “state.” The underlying Java

implementation maps the state parameter to a method name in the specified Controller class,

so the URL specifies both the class and the method for dispatching.

The dispatch table and view mapping, as realized in Gradebook, are shown in Table A-1.

Table A-1. Requests and Rendering Map (continued)

URL Base, Controller Class State Name Rendering JSP

/Welcome

com.codeguild

.umdgradebook.

controller.Welcome

 prompt /welcome.jsp

/Classes

com.codeguild

.umdgradebook.controller

.Classes

 list /classes/listclasses.jsp

 promptCreate /classes/promptCreate.jsp

 promptDelete /classes/promptDelete.jsp

 showClass /classes/showclass.jsp

 promptEditClass /classes/promptEdit.jsp

 promptAddAssessment /classes/promptLinkAssess.jsp

 promptAddStudent /classes/promptLinkStudent.jsp

/GradebookLogin

com.codeguild

.umdgradebook.controller

.GradebookLogin

 promptLogin /security/login.jsp

 processLogin /welcome.jsp

 processLogout /security/logout.jsp

 promptChangePassword /expresso/jsp/register/change.jsp

 processChangePassword /expresso/jsp/register/status.jsp

 emailValidate /expresso/jsp/register/status.jsp

 promptSendPassword /expresso/jsp/register/sendPassword.jsp

 processSendPassword /expresso/jsp/register/status.jsp

Appendix—Technical Information 35

Table A-1. Requests and Rendering Map (continued)

URL Base, Controller Class State Name Rendering JSP

/Students

com.codeguild

.umdgradebook.controller

.StudentController

 promptCreateStudent /students/promptCreate.jsp

 viewStudent /students/view.jsp

 promptEditStudent /students/promptEdit.jsp

 promptDeleteStudent /students/promptDelete.jsp

 list /students/list.jsp

/Assess

com.codeguild

.umdgradebook.controller

.Assessments

 listAssessments /assessments/list.jsp

 viewAssessment /assessments/view.jsp

 promptCreate /assessments/promptCreate.jsp

 promptEditAssessment /assessments/promptEdit.jsp

 promptDelete /assessments/promptDelete.jsp

 promptScoreObs /assessments/promptScoreObs.jsp

 viewScores /assessments/viewScores.jsp

 promptImport /assessments/promptImport.jsp

 confirmImport /assessments/confirmImport.jsp

 exportScores /assessments/exportScores.jsp

A.3 XML Specification

Two XML documents are required to make a request of the scoring engine. First, the student

responses must be formatted in the QTI 1.2 language of XML, as described on the IMS Global

site at <http://www.imsglobal.org/question/qtiv1p2/imsqti_res_infov1p2.html> and in

associated documents on that site. Second, the PADI psychometric information about Student

Models, Measurement Models, and so on, must be formatted in a proprietary XML format (QTI

does not accommodate this information). The precise XML schemas for the various parts of the

proprietary format for the scoring engine are described on the BEAR site at

<http://bearcenter.berkeley.edu/padi/schemas/> and also in BEAR literature about the scoring

engine. Both the QTI format and the PADI psychometric XML format are summarized below.

For more specific information, consult the QTI documentation and BEAR documentation,

respectively.

36 Appendix—Technical Information

A.3.1 QTI

The main hierarchy of concern in our case is described in Table A-2, where the left column has

indentations to imply hierarchical nesting and the description on the right explains the

information found within the tag.

Table A-2. Annotated Summary of Tags within QTI

Tag Comment

<qti_result_report> Root tag: all students

 <result> One student

 <context> All identification for this student

 <assessment_result> One assessment for this student

 <item_result> One item within assessment

 <asi_metadata> All meta-data about this item

 <asi_metadatafield> One piece of metadata (e.g., ID of item)

 <outcomes> All outcomes for this item

 <score> One score for this item

A sample of such QTI language XML can be found in Figure A-3.

Appendix—Technical Information 37

Figure A-3. Sample of QTI

In this example, the first student is identified with ID BK3F070103 inside the tag named

“identifier_string;” this ID also happens to be the name used for the student. Also, the ID for the

observable variable is “563” inside the tag “field_value,” which is embedded as metadata for

the appropriate item. For that item, the student received a score of “1” inside the tag

“score_value.”

A.3.2 Psychometric XML Plus Scoring Engine Options

The main hierarchy of concern for the psychometric XML is described in Table A-3, where the

left column has indentations to imply hierarchical nesting and the right-hand column

description explains the information found within the tag.

38 Appendix—Technical Information

Table A-3. Annotated Summary of Tags within Psychometric XML

Tag Comment

<scoring_engine_input > Root tag: all psychometric info and scoring

options

 <scoring_engine_options> All scoring options

 <STUDENT_MODEL_TYPE> Student Model (only one allowed)

 <MEAS_MODELS> All Measurement Models

 <MEASUREMENT_MODEL_TYPE > One Measurement Model

A sample of such psychometric XML can be found in Figure A-4.

Figure A-4. Sample of PADI Psychometric XML

In this example, the scoring engine is instructed to use the MLE (maximum likelihood

estimation) method, and the single Student Model has the title “Combined Inquiry and

Content.” No Measurement Model is visible in Figure A-3. A continuation of the XML document

is shown in Figure A-5.

Appendix—Technical Information 39

Figure A-5. Continuation of PADI Psychometric XML Showing Measurement Model

As indicated, the first Measurement Model has title “BioKIDS 1D-MM 1” and has a reference to a

single Student Model Variable. A reference like this implies that the object referred to has

already been fully described previously in the document. The Measurement Model also has an

Observable Variable, a Scoring Matrix, a Design Matrix, and Calibration Parameters. Several

other Measurement Models follow the first one, but in this display, they have been collapsed

(the contents within the tag hidden from view) at the bottom of the figure. For more detail

about XML structure for psychometric information, consult the technical reports available on

the PADI Web site, <http://padi.sri.com>.

	1.0 Background
	2.0 Purpose of Gradebook
	3.0 Implementation of Gradebook
	3.1 Navigation
	3.2 Assessments
	3.2.1 Validation
	3.2.2 Scoring Configuration
	3.2.3 Viewing an Assessment and Its Associated XML

	3.3 Students
	3.4 Classes
	3.4.1 Associating Assessments
	3.4.2 Associating Students

	3.5 Scores
	3.5.1 Viewing Scores
	3.5.2 Score Entry via Web Forms
	3.5.3 Importing Scores

	3.6 Item Bundling
	3.6.1 Example
	3.6.2 Design Supplier Support
	3.6.3 Gradebook Support for Bundling

	3.7 QTI Format for Scores

	4.0 Lessons Learned and Future Directions
	4.1 Visualization and Summarization
	4.2 Navigation
	4.3 Co-evolution with the PADI Design System and BEAR Scoring Engine
	4.4 Network Transfer

	5.0 Conclusion
	References
	Appendix—Technical Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

