
Robert Mislevy
University of Maryland

PADI Technical Report 4 | March 2005

Report Series Published by SRI International

P A D I

PADI | Principled Assessment Designs for Inquiry

Participatory, Example-Based
Data Modeling in PADI

Lawrence Hamel, CodeGuild, Inc.

Patricia Schank, SRI International

SRI International
Center for Technology in Learning
333 Ravenswood Avenue
Menlo Park, CA 94025-3493
650.859.2000
http://padi.sri.com

PADI Technical Report Series Editors
Alexis Mitman Colker, Ph.D. Project Consultant
Geneva D. Haertel, Ph.D. Co-Principal Investigator
Robert Mislevy, Ph.D. Co-Principal Investigator
Klaus Krause. Technical Writer/Editor
Lynne Peck Theis. Documentation Designer

Copyright © 2005 SRI International. All Rights Reserved.

Acknowledgment

PADI is supported by the Interagency Educational Research Initiative (IERI) under grant REC-0129331 (PADI
Implementation Grant).
Disclaimer
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

P R I N C I P L E D A S S E S S M E N T D E S I G N S F O R I N Q U I R Y

T E C H N I C A L R E P O R T 4

Participatory, Example-Based Data Modeling in PADI

Prepared by:

Lawrence Hamel, CodeGuild, Inc.

Patricia Schank, SRI International

ii

C O N T E N T S

1.0 Introduction 1
1.1 Modeling with Collaboration and Validation 1
1.2 Background 2

2.0 Limitations of Existing Domain Modeling Techniques 3
2.1 Unified Modeling Language (UML) 3
2.2 Ontological Engineering 5
2.3 The Point of View of a Nontechnical Expert 6

3.0 Example-Based Modeling (EMo) 7
3.1 The Role of Examples in Domain Modeling 7
3.2 Design Process 7
3.3 Use of EMo 9

4.0 EMo Features 10
4.1 Collaboration through Shared Editing and Viewing 11
4.2 Shared-Relationship Attributes versus Owned Attributes 11
4.3 Exporting XML of the Models and Examples 13
4.4 Permissions Can Be Specified per Instance (per Row) 14
4.5 Menus Can Constrain Attribute Values 15
4.6 Special Handling Is Possible via Extensions 15

5.0 EMo Implementation 16
5.1 Three-Tier Application within the Expresso Framework 16
5.2 Node-Attribute-Relation 16

6.0 Future Directions 19

7.0 Conclusions 20

References 21

 iii

F I G U R E S

Figure 1. Editing a Sample Movie Object Using Rational Rose 4
Figure 2. A Simplified Movie Object in UML 4
Figure 3. Editing Movie Attributes Using Protégé 5
Figure 4. Entering a Sample Movie Instance Using Protégé 6
Figure 5. An EMo Page Allows Manipulation of the Attributes of a Movie Model 10
Figure 6. A Movie Instance in EMo Provides Fields for the Input of Sample Data 11
Figure 7. Relations Between Instances Are Specified by Checkbox Selections 13
Figure 8. A Fragment of XML Export for a Movie Instance 14
Figure 9. A Test of Privileges 14
Figure 10. A Code Sample of a Test to Support Custom Handling of a Model Attribute 15
Figure 11. A Database Schema for Nodes, Attributes, and Relations 17
Figure 12. A Code Fragment Demonstrating Uniformity in Handling All Types of Nodes 18

iv

A B S T R A C T

Domain experts are essential for successful software development, but these experts may not recognize

their ideas when these are abstracted into Unified Modeling Language (UML) or ontologies. We describe a

Web-based tool for modeling that creates and manipulates a simple data model without representing it in

UML, while promoting collaboration and the use of examples to compare and validate the model. The free,

open-source tool, “EMo,” is a by-product of a team effort to invent and refine a complex data model and

library of examples for the Principled Assessment Designs for Inquiry (PADI) project. We discuss alternative

tools, such as UML editors, as well as the process that led to EMo.

Introduction 1

1.0 Introduction

1.1 Modeling with Collaboration and Validation

In an effort to standardize digital communication in their fields, many usage communities

and trade groups have created Extensible Markup Language (XML; Goldfarb & Prescod,

1998) data models with acronyms like HL7 (Health Level Seven, Inc., 2004), QTI (IMS Global

Learning Consortium, Inc., 2000), and FIX (Fix Protocol, Ltd., 2004). The collaborative design

of these data models is often the primary activity of such groups, and their published

models can have a significant impact. For example, HL7 (hl7.org) is widely used in medical

informatics, QTI (imsglobal.org) is popular in learning-management systems, and FIX

(fixprotocol.org) is used in securities exchange. Most large commercial systems in their

respective domains tout abilities to interchange information with these standards, and

their respective companies spend large sums to sponsor and influence the standards

bodies.

Within workgroups of domain experts, such as those mentioned above, the contributions

of individuals are mediated by tools and representations, and perhaps by technical

personnel who run the tools and edit the representations. How do these nontechnical

domain experts contribute to modeling and validate that their domain is represented

correctly by a candidate model? Where do concrete examples fit into collaboration? New

techniques are needed to increase participation of domain experts in data modeling to

support creative, interdisciplinary, and collaborative exploration to promote better designs

(Sullivan, 2004). Domain experts must be able to validate that their domains are

represented correctly by candidate designs. In line with these goals, participatory design—

in which stakeholders take a proactive, central role in the design team, working with

engineers on a design—can often lead to more usable designs and shortened

development and test cycles (Schuler & Namioka, 1993). This paper describes one

approach to supporting collaborative data modeling and offers a brief comparison with

other popular approaches to data modeling (Sanders, 1995).

The effort to define a data model collaboratively raises issues similar to those that are

already well documented in the fields of knowledge engineering and knowledge

management: the difficulties of knowledge extraction and the capture of social context.

For example, in artificial intelligence research, the development of expert systems relies on

extracting knowledge from experts and representing that knowledge in the system. In

practice, it is quite difficult and time-consuming for experts to articulate their (often tacit)

knowledge and skills, removed from the context of an activity (Dreyfus, 1993). Designers of

knowledge management systems experience similar issues when they try to codify

employees’ situated knowledge within a company knowledge base. After employees leave

a company, their knowledge often cannot be recreated because context and practices

were not captured (Brown & Duguid, 2000). Researchers in situated cognition (e.g., Brown

& Duguid, 2000; Suchman, 1987) argue that context and practice are both critical to

understanding knowledge and extremely difficult to represent in knowledge systems.

2 Introduction

1.2 Background

The work described in this paper grew out of a National Science Foundation (Interagency

Education Research Initiative) project, Principled Assessment Designs for Inquiry (PADI),

that attempts to provide a practical, theory-based approach to developing quality

assessments of science inquiry and to model the psychometrics of the assessment of

scientific inquiry skills (Mislevy et al., 2003). The PADI team includes nearly 30 members

from four educational organizations: SRI International, University of Maryland, University of

California at Berkeley, and University of Michigan. The vast majority of the team members

are domain experts in science education, educational research, assessment, and

instruction. When the project began, only a handful of team members were familiar with

data modeling or software development.

The main goal of the PADI project is to develop a rigorous design framework for assessing

middle school student inquiry skills in science, which are highlighted in various education

standards but difficult to assess. A primary deliverable of this design framework is a robust

data model of the domain of assessment. Our main goal is not to develop a specific

application (like a tool for teachers to create assessments) but to build a framework for

creating assessments, including a flexible data model that could serve in many such

applications. To inform our efforts, we experimented with sample assessments and

assessment tools (like grade books) that used the domain model.

As the project team teleconferenced to discuss models of student understanding, they

needed a way to manipulate and compare multiple models and examples in a distributed,

shared manner. When manipulating their models, they wished to see the effect on their

sample data immediately. The domain experts were not familiar with Unified Modeling

Language (UML; Arlow & Neustadt, 2001), the de facto standard for data modeling, nor

with ontology construction more generally (Gruber, 1995). The team members charged

with software development sought to augment a modeling process with an example-rich

approach to modeling. Additionally, the project required the collection of a library of

samples, so the authors sought to leverage the creation of exemplars (for validation and

discussion) as an opportunity to add to the final library. A Web application, dubbed “EMo”

(for Example-based Modeling), was designed to expose a “virtual” data layer, a layer of

abstraction between the model displayed and the real database structure (Schank &

Hamel, 2004). Domain experts may use this virtual layer to create and modify models and

interrelations among models. EMo provides a way for them to browse and enter examples

in order to validate the design under discussion.

In this paper, we first review two popular domain modeling approaches—UML and

ontological engineering techniques—and explain why they are not ideal for our purposes.

Then, we introduce the alternative example-based approach that was developed by our

team. Finally, we describe the features of the EMo system that we implemented to support

our data modeling needs.

Limitations of Existing Domain Modeling Techniques 3

2.0 Limitations of Existing Domain Modeling Techniques

2.1 Unified Modeling Language (UML)

One of the earliest methods used for data modeling is Entity Relationship (ER) modeling,

which graphically presents the elements of a relational database through sets of shapes

and lines (Chen, 1976). The Unified Modeling Language (UML), which shares many surface

features with ER, is the de facto standard for object-oriented data modeling (Arlow &

Neustadt, 2001). However, UML features take considerable time to learn, and UML is

recognized even by its proponents as being complex and difficult to use for

communication with nontechnical members of a project (Tilley & Huang, 2003).

Commercial tools like Rational Rose (IBM Corporation, 2004) allow visual modeling in UML

and similar graphical formats. Models are created with a visual editor, and in Rose,

collaboration is supported to the extent that one person can edit while displaying the

screen to others, who critique. The editor can also publish pictures of the UML diagrams to

the Web. For a teleconference, some kind of screen-sharing technology like NetMeeting

(Microsoft Corporation, 2004) might be used to share the application. Another commercial

tool, Poseidon for UML (Gentleware, 2004), which is based on the popular open-source

ArgoUML project (Tigris.org, 2004), recently began offering an Enterprise Edition that

allows the sharing of models in a client-server configuration as long as each concurrent

user has a license.

While the diagrams and syntax of UML can express very complex models, UML tools

typically do not offer much support for entering sample data to validate the models. Most

UML tools are intended for an audience of software engineers who will translate the UML

diagrams into objects in Java or other programming languages. But generating objects in

Java is considerably different from using sample data to populate and validate a data

model. UML does offer the ability to express use-cases and deployment diagrams

pictorially, but these use-cases typically explain large-grain interactions between the user

and the system.

To demonstrate the use of a representative UML tool, consider the following modeling

exercise: a “Movie” markup language that might help in interchanging information about

movies in XML format. Figure 1 shows the creation of a Movie model in Rational Rose

Enterprise, v2002.05.

4 Limitations of Existing Domain Modeling Techniques

Figure 1. Editing a Sample Movie Object Using Rational Rose

This Movie model will start with only a few attributes: Producer, Director, Writer, and Cast,

as well as length, debut date, and rating, as shown in Figure 2. Potentially, roles like

Producer and Director may be filled by multiple people, so an appropriate design would

use an aggregation relationship; for example, the Movie has a collection of Person

instances that constitute the Producer attribute. These aggregation relationships also

imply sharing of the Person if, for example, a Director directs two separate Movies. To help

distinguish aggregation attributes from others, we will capitalize shared attributes like

Cast, leaving other attributes like length in lower-case.

Figure 2. A Simplified Movie Object in UML

To share the UML diagram in Rose, the team member who is editing can export the

diagram as an image file and transfer it to a Web server. This scenario, however, does not

permit shared control of the model or the invention of competing models by others. There

is no clear support for creating many instances of the various models within the tool. Rose

Limitations of Existing Domain Modeling Techniques 5

customers are expected to create Java instances or SQL schemas and are expected to be

knowledgeable about software engineering practices.

2.2 Ontological Engineering

In the field of artificial intelligence, ontological engineering tools have been created to

help developers and domain experts build effective knowledge-based systems (Domingue

et al., 2001; Domingue, 1998; Farquhar, Fikes, Pratt, & Rice, 1995; Gennari et al., 2003;

Swartout, Patil, Knight, & Russ, 1996). Some ontological tools attempt to support

communities of nontechnical domain experts (Domingue et al., 2001; Gennari et al., 2003),

but few emphasize the entry of examples to validate the design. An exception is Protégé

(Gennari et al., 2003), which supports complex models and entry of examples (“instances”).

However, in Protégé, these sample records, or instances, are reduced to the role of design

annotations, with functionality for manipulating and sharing examples buried among

many other features. Protégé also recently added a feature for sharing models for

collaboration. Because it is a desktop (rather than Web-based) application, however, users

must perform additional configuration of Protégé to enable shared modeling. Figures 3

and 4 show screens from Protégé, displaying the same Movie model as shown previously

with Rose.

Figure 3. Editing Movie Attributes Using Protégé

6 Limitations of Existing Domain Modeling Techniques

Figure 4. Entering a Sample Movie Instance Using Protégé

Protégé allows sample records (instances) to be entered for a given model, as shown in

Figure 4. However, the process presents some barriers to nontechnical editors. For

example, they are presented with many options and unfamiliar terms in the interface; in

the default layout for entering an instance, Protégé may render fields in an unexpected

order, and changing that default layout involves programming; and sharing the results

with peers involves special configuration.

2.3 The Point of View of a Nontechnical Expert

Now imagine that a teleconference on the Movie model is attended by luminary film

directors, each an acknowledged expert in his or her domain. We assume that they will not

easily understand the UML diagrams from Rose, because UML features take considerable

time to learn (Tilley & Huang, 2003). Although the Protégé entry screens seem easier to

comprehend, we expect that they still would be unusual and off-putting for our group of

Scorseses and Spielbergs. How will the directors show their sample records to their

colleagues in other cities? How will they propose an alternative model to a peer? These are

the questions we needed to address in our research group, with a simpler, more example-

rich, and sharable tool for modeling, albeit one with less capability to formulate complex

models. We attempted to simplify the presentation of models, relying on the common

knowledge of Web forms to assist recognition and participation by nontechnical domain

experts.

Example-Based Modeling (EMo) 7

3.0 Example-Based Modeling (EMo)

EMo is a Web application that enables data model creation and manipulation with just a

Web browser. Team members may be given various permissions that dictate their ability to

edit models, enter examples, and view examples. Model editors can create new models, or

add attributes to existing models, by typing in a name and description for the new model

or attribute. Other team members may have permission only to enter sample records —

i.e., populate instances of models. Others may only be able to view sample records. All

sample records for a given model gain and lose attribute fields dynamically as the model

editors manipulate the models.

In the following, we describe how EMo is best characterized as an instance of example-

based modeling and summarize how EMo was developed and the nature of its use by the

PADI project team. Then we revisit the Movie example using EMo and highlight the

features of the system.

3.1 The Role of Examples in Domain Modeling

In contrast to existing systems, EMo is specially oriented around examples as the primary

device for communication and negotiation. The research literature indicates that such

contextualization can be advantageous. Research on learning has shown that people

strongly prefer to learn from concrete examples over abstractions when given a choice

(Recker & Pirolli, 1995; LeFevre & Dixon, 1986); and, more importantly, focusing on

examples, rather than abstract representations, can both enhance and accelerate

comprehension and learning (Chi et al., 1989; Pirolli & Anderson, 1985; Zhu & Simon, 1987)

because of issues related to working-memory capacity and motivation. In software design,

the use of examples can make design activities more accessible to a great variety of

contributors; help designers recognize, capture, and reuse generalizations; and ultimately

enhance the effectiveness of the products of design (Carroll, 2000; Carroll & Rosson, 1992).

Examples take center stage in scenario-based design, which moves away from the more

technology-driven design perspective of abstract descriptions that focus on generic types

to a more work-driven perspective of concrete, colloquial examples that focus on a

particular user’s view and activities that need to be accomplished. Such scenarios provide a

common ground for communicating and conveying users’ needs and mental models to

the developers, helping to create system models that are meaningful and accessible to

both groups (Carroll, 2000; Carroll & Rosson, 1992). Similarly, we argue that in domain

modeling, examples not only validate a candidate model, they also support the creative

interplay among domain and technical experts, improving communication and

understanding of requirements and stakeholders’ practice and ultimately improving the

usefulness and accuracy of the final model.

3.2 Design Process

The primary features of EMo were designed and developed over the period of a year in a

series of weekly teleconferences that involved the entire PADI team. One of our first tasks

was to explore tools and methods to help our team of domain experts articulate a

conceptual framework for assessment design, delivery, and scoring. We followed a

participatory, iterative design process, integrating top-down approaches that emphasize

8 Example-Based Modeling (EMo)

concepts and planning with bottom-up approaches that emphasize data and coding. For

example, in the top-down approach, content experts drafted user scenarios and software

engineers created UML diagrams of the salient concepts like “Student Model,” “Design

Pattern,” and “Measurement Model,” showing their interrelations. In the bottom-up

approach, software engineers developed prototypes and content experts attempted to

enter assessment examples into these prototypes.

During weekly teleconferences in the first 3 months of the project, we focused on defining

use-cases to clarify the bounds and scope of the work. During this phase, every team

member was asked to submit at least one use-case for group review. Team members

frequently revisited and clarified misunderstandings regarding the goals and target users

of the system. Many had difficulty understanding what a data model was; their primary

experience was with concrete applications, like test delivery systems, which assume some

data model. For example, early use-cases submitted by team members often involved

teachers and students interacting with the system to develop, administer, and score

assessments. After a few iterations and patient guidance by the principal investigators

(especially as software engineers grappled with the complexities of assessing inquiry skills),

our final set of about a dozen use-cases focused mainly on highly skilled, psychometrically

astute assessment developers interacting with a design system to create templates for

assessments.

Armed with the knowledge about the target users and requirements from the use-cases,

we proceeded to design the data model. In this phase, which lasted approximately 3

months, we began using UML notation to explore possibilities for the data model. We used

a typical knowledge extraction method in our weekly meetings, in which a senior engineer

presented UML diagrams and solicited critiques from the domain experts. Group members

had difficulty understanding the diagrams, as evidenced by repeated discussion of what

the various arrows and shapes (circles, boxes, diamonds) meant. The nontechnical domain

experts did not feel comfortable with the notation, and they certainly could not have

modified the diagrams themselves (they had neither the Rational Rose software nor the

familiarity with the notation to make changes). Hence, in this phase, the engineer

translated domain expertise into a rough data model.

The PADI team members needed an easier way to manipulate and compare multiple

models and examples in a distributed, shared manner and to see the effect on their

samples immediately when the model was manipulated. The principal investigators of

PADI wanted a design system that would support creative interplay between domain and

technical experts in the development of blueprints for complex assessments. They cited

early criticisms of technology-supported templates that surfaced in the assessment

community as an additional motivation: working on a template on a computer was a

largely solitary activity, and it deterred the exchange required between domain experts

and assessment experts when tasks were being designed (U.S. Congress, Office of

Technology Assessment, 1992). Such solitary activity was reported to reduce the quality

and richness of tasks that were being developed.

The team members charged with software development sought to avoid the pitfalls of

previous template systems by promoting the creation of samples for validation and

Example-Based Modeling (EMo) 9

discussion. This approach was also attractive in that it would yield examples for the

eventual PADI library. Accordingly, once a high-level (although very limited) model of the

domain had been developed in UML, the technical team began implementation of a Web-

based software prototype that would allow any team member to populate the candidate

data model with examples. The interface design was informed by use-case sketches that

depicted a proposed flow of pages a person would see when doing the task described in

the use-case. A Web-based solution was implemented to leverage team members’

familiarity with Web forms, navigating Web pages, and refreshing a Web page to view new

information in the shared repository.

By the 8th month of the project, the prototype was available to team members, and they

began entering examples and critiquing the model to identify missing elements and

needed revisions.

3.3 Use of EMo

During weekly teleconferences, it was natural for the team to discuss sample records rather

than focus on the abstract model per se. When a new attribute or relation was required in a

candidate data model, a programmer would make the change in the Web application for

viewing the following week. These changes grew frequent enough to merit the creation of

a metalevel of functionality to expose editing of the model itself, and what we call EMo

began to take shape. Using EMo editing features, changes to the model could happen

during a teleconference, and all members would then see their samples change to reflect a

new design (e.g., a new, empty field showing up in their sample records). The system also

allows the creation of competing models, along with their own sample records.

Using the prototype over 18 months, the PADI team worked to extend and refine the data

model to encompass 15 core models, with numerous attributes and relations among these

models, as well as sample instantiations of their use. As of September 2004, 20 team

members had entered 871 examples into the system.1 In contrast, with the UML editing

tool, a single team member did all the composing. The ability of the evolving data model

to accommodate numerous examples created by a large and varied group of nontechnical

domain experts suggests that this example-based, participatory process has led to a fairly

robust, widely understood model. It also helps us achieve a secondary goal of providing a

library of working exemplars for the PADI conceptual framework.

Halfway through the 18 months, the term “prototype” was consciously dropped, and team

members began referring to the tool as the “PADI Design System,” which includes the

model-editing pages we describe herein as EMo, as well as additional features that are

specific to the assessment domain.

1 Across model types, the examples are fairly uniformly distributed (median=51, mean=58, min=12, max=125). Across
contributors, the distribution is more bimodal, with one outlier contributing 207 examples (median=22, mean=43,
min=1, max=207).

10 EMo Features

4.0 EMo Features

Consider the previous Movie modeling example in EMo. Figure 5 shows the editing screen

to create a Movie model with several attributes. From this screen, team members can

reorder, insert, and delete attributes for a model. A team member could create an

alternative model for Movie with different attributes and thereby design on a parallel track.

Figure 6 shows a populated instance—a sample record in which data have been entered

for a particular movie.

Figure 5. An EMo Page Allows Manipulation of the Attributes of a Movie Model

EMo Features 11

Figure 6. A Movie Instance in EMo Provides Fields for the Input of Sample Data

Now imagine our hypothetical teleconference with luminary film directors. When they see

Movie instances like that in Figure 6, we expect them to comprehend the data model more

quickly than they would by looking at a UML diagram, given the greater difficulty of

comprehending abstract UML representations compared with concrete examples. We

expect them to tell us that the Director field should be the first field in the display and to

ask, “Where, by the way, are the fields for gaffer, grip, and Foley editor?”

4.1 Collaboration through Shared Editing and Viewing

As a Web application with server-side data persistence, EMo offers the potential to share all

its contents (given sufficient permissions), including editing rights for the current model

and the ability to create a competing model. As model edits are made and stored in the

database, all subsequent views reflect the updates, providing immediate feedback to

participants.

4.2 Shared-Relationship Attributes versus Owned Attributes

When analyzing a domain in software engineering, one of the first challenges is to identify

the primary objects of a domain and the relations between them, as opposed to

identifying minor attributes of objects. For example, in analyzing movies, we have an

12 EMo Features

intuition that producers, location, and script are probably of primary importance, worthy of

modeling in their own right and related to the Movie model, while length and sound-

processing technology should probably be just minor attributes of the Movie model (of

course, this judgment depends on one’s perspective, which is why domain experts must

negotiate among alternatives to reach consensus).

In an effort to make this distinction clearer, we introduced the concept of “shared” versus

“owned” attributes. To compare shared versus owned, consider that the same actor can act

in both movie A and movie B, but the actor is an instance of the Person model that is

related to each movie; Actor is a shared attribute of the Movie model. In contrast, consider

that movie A and B can both last 90 minutes, but the length of the movie is not shared,

largely because we do not perceive benefit from having “90 minutes” as an instance of

some overdone Length model. The length of a movie is simply an owned attribute. Shared

attributes are really relationships between instances, and owned attributes are values that

belong to one particular instance.

To explain the shared concept to our domain experts, a library of sharable instances was

emphasized, wherein users can choose from a list of existing instances to make a relation

to the current instance under construction. The modeling of shared relations includes a

name for the relation, like “an example of.” We prepackaged and emphasized two common

relationships, “has-a” (aggregation) and “is-a” (inheritance), although we used the terms “I

am a part of” and “I am a kind of” for the labels on these relations, respectively. Relation

definitions also specify cardinality, like “only one relation allowed” or “multiple relations

allowed.” We tended to use the term “shared relations” for shared attributes to save the

word “attribute” for “owned attribute.”

To explain owned attributes, the concept of identity was emphasized. For example, some

attributes of a new instance should not be shared, such as when the attribute helps define

the nature of the instance, like the title of the instance. In a sense, owned attributes are

defined as whatever should not be shared, from the point of view of the domain expert.

Owned attributes are simply edited and viewed as values within an instance.

EMo represents the two types of attributes, shared and owned, with a visual differentiation

in both creating and viewing the attribute. In a sample record, shared relationships are

created by relating two instances via “checkbox” associations, where the possible

candidates are constrained by the model. A list of possible candidates is supplied by the

system, as shown in Figure 7. In this example, candidate (Person) instances for the role of

Director are presented. The relationships thereby created are viewed as hyperlinks,

enabling navigation to view the related instance. Owned attributes are simply edited and

viewed as values within the containing instance. In Figure 6, compare the hyperlinks listed

for the shared attribute Cast (links to Person instances) with the simple value “117 minutes”

listed for owned attribute length (duration of this particular movie).

EMo Features 13

Figure 7. Relations Between Instances Are Specified by Checkbox Selections

When models are designed, how are attributes determined to be shared or owned? This is

part of the domain discussion; it depends on how experts view the domain and how they

plan to use the data. Taking up the Movie example again, consider the Director of a Movie

instance. What should happen if we change the Director’s biography, updating some

contact information? Do we want this change to stay locally within just one movie? No,

that change should be shared, so the information should reside within the Director

instance so that all movies sharing the Director instance will also share this updated

information.

In contrast, consider the length of a movie. Although a particular length of, say, 90 minutes

may hold true for several movies, there seems to be no clear benefit to sharing a library of

movie-length instances. If we add 10 minutes to a particular movie instance, we do not

want to increase the length of all other movies that also happen to have a length of 90

minutes. (If you can imagine a scenario where sharing movie length is beneficial, by all

means, adjust your model to share movie lengths!)

Whether an attribute is shared or owned can be debated and may even change. Fostering

well-focused debate is one of the goals of getting domain experts to compare and contrast

modeling decisions, even to the point of creating competing models and examples to

make their points.

4.3 Exporting XML of the Models and Examples

Although both the models and instances of those models are represented in HTML for

manipulation, EMo can export representations in XML. XML tag names are taken from the

internal names of the models. For example, if the internal name of the Movie model is

“MOVIE” and the internal name of the length attribute is “LENGTH,” a segment of XML for a

movie might look like Figure 8.

14 EMo Features

Figure 8. A Fragment of XML Export for a Movie Instance

<MOVIE NODE_TITLE="American Beauty">

 <LENGTH PART_LABEL="length"

 ATTRIBUTE_VAL="117"/>

...

 <RELATED PART_LABEL="Director" ... >

<PERSON NODE_TITLE="Sam Mendes" ... />

 </RELATED>

...

</MOVIE>

In the example in Figure 8, the tag <RELATED> indicates a shared attribute. To facilitate

documentation and distribution of models, annotated XML of model structures—a kind of

glossary of models and their attributes with textual descriptions—is available.

Import/export of standards-based XML is also planned for future versions.

4.4 Permissions Can Be Specified per Instance (per Row)

Collaboration groups can be given fine-grained permissions that control reading and

writing on a row-by-row basis, where a row in the database corresponds to a model or a

model instance in EMo. Furthermore, a distinction is made between those users who have

permission to edit examples and those who have permission to edit the model itself.2 Row-

based permissions are supported by the application framework, Expresso (Jcorporate Ltd.,

2004), that underlies EMo. Figure 9 shows a code sample of an explicit permissions test for

whether or not to show a “delete” link when displaying a particular instance.

Figure 9. A Test of Privileges

if (node.canRequesterWrite()) {

 // Add a "delete" link

 Transition deleteTransition = new Transition(PROMPT_DELETE_NODE, this);

 deleteTransition.addParam(Node.NODE_ID, node.getField(Node.NODE_ID));

 rowBlock.add(deleteTransition);

}

2 At present, EMo does not have a mechanism for version control. In other words, as with many shared systems, the last
person who clicks “Save” has that version saved, replacing whatever content was there previously. In practice, this
means that during a conference call, one person is typically selected to be the editor for a given entry at one time.

EMo Features 15

In Figure 9, “node” is a model instance in EMo, and “Transition” is the Expresso expression

of a hyperlink. In this sample, a “delete” hyperlink is conditionally added to the current

output if the current user has write permissions. Output blocks like “rowBlock” are created

within the controller tier of a three-tier system and subsequently sent to a rendering layer

for conversion into HTML or XML.

4.5 Menus Can Constrain Attribute Values

Models may contain attributes that have constrained values (as opposed to free-form text

entry), and these constrained values will be presented in a menu. Users with model-editing

privileges can dynamically alter the constraints (the menu items) by editing the model. In

response, the menus available to model instances will change. For example, if a model

editor adds “NC-17” to the possible choices for a Movie’s rating attribute, then all screens

for editing Movie instances will show this new menu item.

4.6 Special Handling Is Possible via Extensions

Attributes that require custom rendering or special handling for viewing and/or editing

can implement a special Java interface (IPartHandler) for that purpose. This feature

provides for the creation of arbitrary view/edit screens, custom built for a given attribute.

For example, a particular type of attribute might be best represented as a two-dimensional

“spreadsheet” of values. In the development for psychometrics, special handlers for

spreadsheets and the summarization of nested instances were introduced. Figure 10

shows a code sample for the conditional execution of special handling.

Figure 10. A Code Sample of a Test to Support Custom Handling of a Model Attribute

if (part.hasCustomHandler()) {

 IPartHandler handler = part.getCustomHandler();

 Transition trans = handler.getEditTransition(request);

 trans.transition(request, response);

 return;

}

16 EMo Implementation

5.0 EMo Implementation

5.1 Three-Tier Application within the Expresso Framework

EMo is a three-tier application based on the free, open-source Expresso framework, which

in turn is based on Apache Struts (http://jakarta.apache.org) and uses Java Server Pages

(Sun Microsystems, 2004) technology for the rendering layer. Expresso offers a model-

view-controller (MVC) system, in which the universe of supported Web requests is mapped

into a finite-state machine. Expresso includes an object-to-relational layer that permits

developers to write persistence code in Java only, without explicit SQL. In practice, this

means that our development commonly takes place on desktop computers running

Windows or Mac OS X, using the Hypersonic SQL database (Hypersonic SQL Group, 2004),

followed by seamless deployment on Solaris servers using the MySQL database (MySQL,

Inc., 2004).

5.2 Node-Attribute-Relation

Editing a model in EMo actually changes a virtual data layer, a layer of abstraction between

the model displayed and the real database structure. A simple database schema underlies

the representation on the screen. The database contains nodes, attributes, and relations.

The EMo database schema is shown in Figure 11. The authors acknowledge the irony of

showing a UML-like graphic to represent database information within an article about

hiding UML. In Figure 11, the tables with uppercase titles pertain to modeling. When

creating a new model like Movie, users of EMo actually are creating an entry in the

NODE_TYPE table. When adding attribute fields to a new model like Movie, users actually

are adding entries in the PART table, like “Director” and “length,” with a foreign relation

back to the proper Movie entry in the NODE_TYPE table. A PART table entry can represent

either an owned attribute or a shared relationship. Tables that have titles with only initial

capitals (Node, Attribute, Relation) pertain to instances of the model. Model instances are

stored in the Node table, owned attributes are stored in the Attribute table, and shared

relationships are stored in the Relation table.

EMo Implementation 17

Figure 11. A Database Schema for Nodes, Attributes, and Relations

Every kind of model that is defined by the model editor is defined in Java as a NodeType

object with a distinct entry in the field “NODE_TYPE_NAME.” For example, the Movie

model is a NodeType with the field “NODE_TYPE_NAME” set to “MOVIE.” Sample records

(referred to as “instances” elsewhere in this paper) are persisted in the Node table and

represented in Java with the Node object. Each owned attribute is similarly implemented

by an Attribute object in Java with a distinct entry in the field “ATTRIBUTE_TYPE.” For

example, the length attribute of the Movie model is represented in Java by an Attribute

object with the “ATTRIBUTE_TYPE” field set to “LENGTH.” Each Attribute object in Java also

has a reference ID (a foreign key in database terminology) back to the owning Node.

Relations between NodeTypes are defined by RelationType objects, which can be

manipulated by the model editor. In the Movie example, a shared relation like Directed is

represented in the database with an entry in the RELATION_TYPE table and in Java with a

RelationType object. An actual instance of a Relation is persisted in the Relation table, and

represented in Java by a Relation object, connecting one Node Java object with another

Node Java object.

One benefit of a node-attribute-relation foundation is that all model instances can be

handled by the same functions. The code for manipulating a Movie instance is the same as

that for editing a Person instance. For example, the code snippet in Figure 12 collects all

the information necessary for displaying all the attributes (parts) for any node.

18 EMo Implementation

Figure 12. A Code Fragment Demonstrating Uniformity in Handling All Types of Nodes

Part[] parts = PartsFactory.getParts(type); // "type" specifies kind of node

Block partList = new Block("allparts");

for (int i = 0; parts != null && i < parts.length; i++) {

 partList.add(getBlock(nodeId, type, request, parts[i], titleStr,

canEdit));

 }

One potential disadvantage of this design has to do with the number of records per table.

Since all types of objects share the same tables, the tables could become large and

unwieldy. However, typical databases perform well with tens and even hundreds of

thousands of records, so this design is generally sufficient for research purposes and data

model validation, and it meets the needs of the PADI project well.

Future Directions 19

6.0 Future Directions

Many additional features are planned for EMo, including improved filtering, searching, and

sorting of instances, improved visualization of the relationships between instances,

improved tools to annotate and rank instances, improved data-typing of fields, and

import/export of XML schemas in standard formats.

In future research, we would like to observe more domain experts working with EMo,

especially nontechnical experts in a team setting. We would like to collect data on usage

patterns and observe modeling collaboration in several environments. Because the

software is available freely under an open-source license, we hope that others will adopt

and adapt it for their own uses and share their feedback with us. Thanks to generous

support from the principal investigators of the PADI project, EMo is available at

http://sourceforge.net/projects/emo/ under a form of the Mozilla 1.1 open-source license.

20 Conclusions

7.0 Conclusions

As various disciplines attempt to standardize the exchange of information via XML,

modeling teams may benefit from a tool that supports collaborative data modeling. EMo is

a by-product of an effort by domain experts to collaborate in drafting a coherent data

model. It promotes the use of examples, avoiding UML representations and leveraging the

experience of team members with Web forms and online information sharing. EMo proved

sufficiently malleable within a project attempting to model the psychometrics of

assessment design. Indeed, after the modeling phase, our modeling tool continues to

serve as a repository of examples. We actively are developing additional editing

capabilities and navigational aids while expanding the library of examples in this system.

As the model has matured, the model-editing functions are gathering dust, but the system

now provides a library of resources as we discuss content and content-creation “wizards”

to scaffold interaction with the system.

Developers who prefer or require more formal modeling still may consider a collaborative

modeling environment such as EMo because it can provide a hands-on communication

conduit with domain experts. At any point in time, the models produced by EMo can be

translated into UML or other notations. Such translation could be automated in the future.

References 21

References

Arlow, J., & Neustadt, I. (2001). UML and the unified process: Practical object-oriented analysis

and design. Boston, MA: Addison-Wesley.

Brown, J. S., & Duguid, P. (2000). The social life of information. Cambridge, MA: Harvard

Business School Press.

Carroll, J. M. (2000). Making use: Scenario-based design of human-computer interactions.

Cambridge, MA: MIT Press.

Carroll, J. M., & Rosson, M. B. (1992). Getting around the task-artifact cycle: How to make

claims and design by scenario. ACM Transactions on Information Systems, 10(2), 181-212.

Chen, P. (1976). The entity relationship model—Toward a unified view of data. ACM

Transactions on Database Systems, 1(1), 9-36.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations:

How students study and use examples in learning to solve problems. Cognitive Science, 13,

145-182.

Domingue, J., Motta, E., Buckingham Shum, S. J., Vargas-Vera, M., Kalfoglou, Y., & Farnes, N.

(2001). Supporting ontology-driven document enrichment within communities of practice.

In Proceedings of the First International Conference on Knowledge Capture (pp. 30-37). New

York: ACM Press.

Domingue, J. (1998). Tadzebao and WebOnto: Discussing, browsing, and editing

ontologies on the Web. In Proceedings of the 11th Workshop on Knowledge Acquisition,

Modeling and Management. Retrieved May 1, 2004, from

http://ksi.cpsc.ucalgary.ca/KAW/KAW98/domingue/

Dreyfus, H. (1993). What computers still can’t do: A critique of artificial reason. Cambridge,

MA: MIT Press.

Farquhar, A., Fikes, R., Pratt, W., & Rice, J. (1995). Collaborative ontology construction for

information integration (Technical Report KSL-95-63). Stanford, CA: Knowledge Systems

Laboratory Department of Computer Science, Stanford University. Retrieved May 1, 2004,

from http://www-ksl.stanford.edu/KSL_Abstracts/KSL-95-63.html

Fix Protocol, Ltd. (2004). Financial Information eXchange (“FIX”) protocol. Retrieved May 1,

2004 from http://www.fixprotocol.org/

Gennari, J. H., Musen, R. W., Fergerson, W. E., Grosso, M. C., Crubézy, M., Eriksson, H., Noy, N.

F., & Tu, S. W. (2003). The evolution of Protégé: An environment for knowledge-based

systems development. International Journal of Human-Computer Studies, 58(1), 89-123.

Gentleware AG. (2004). Poseidon for UML. Hamburg, Germany: Author. Retrieved May 1,

2004, from http://www.gentleware.com

Goldfarb, C., & Prescod, P. (1998). The XML handbook. Indianapolis, IN: Prentice Hall PTR.

22 References

Gruber, T. (1995). Toward principles for the design of ontologies used for knowledge

sharing. International Journal of Human-Computer Studies, 43(5/6), 907-928.

Health Level Seven, Inc. (2004). HL7 Version 2 messaging standard: Application protocol for

electronic data exchange in healthcare environments. Ann Arbor, MI: Author. Retrieved May

1, 2004, from http://www.hl7.org

Hypersonic SQL Group. (2004). HSQL database engine project. Retrieved May 1, 2004, from

http://hsqldb.sourceforge.net/

IBM Corporation. (2004). Rational Rose software. White Plains, NY: Author. Retrieved May 1,

2004, from http://www-306.ibm.com/software/rational/

IMS Global Learning Consortium, Inc. (2000). IMS Question & Test Interoperability

specification: A review (White Paper IMSWP-1 Version A). Burlington, MA: Author. Retrieved

May 1, 2004, from http://www.imsglobal.org/question/whitepaper.pdf

Jcorporate Ltd. (2004). Expresso Web Application Development Framework, version 5.0.

Retrieved May 1, 2004, from http://www.jcorporate.com/html/products/expresso.html

LeFevre, J. A., & Dixon, P. (1986). Do written instructions need examples? Cognition and

Instruction, 3, 1-30.

Microsoft Corporation. (2004). NetMeeting software. Redmond, WA: Author. Retrieved May

1, 2004, from http://www.microsoft.com/windows/netmeeting/

Mislevy, R. J., Chudowsky, N., Draney, K., Fried, R., Gaffney, T., Haertel, G., et al. (2003).

Design patterns for assessing science inquiry (PADI Technical Report 1). Menlo Park, CA: SRI

International. Retrieved May 1, 2004, from

http://padi.sri.com/downloads/PADI_DesignPatterns.pdf

MySQL, Inc. (2004). The MySQL Database Server. Seattle, WA: Author. Retrieved May 1, 2004,

from http://www.mysql.com/

Pirolli, P., & Anderson, J. R. (1985). The role of learning from examples in the acquisition of

recursive programming skills. Canadian Journal of Psychology, 39, 240-272.

Recker, M., & Pirolli, P. (1995). Modelling individual differences in students’ learning

strategies. The Journal of the Learning Sciences, 4, 1-38.

Sanders, G. L. (1995). Data modeling. Danvers, MA: Boyd & Fraser Pub. Co.

Schank, P., & Hamel, L. (2004). Collaborative modeling: Hiding UML and promoting data

examples in EMo. Computer Supported Collaborative Work (Chicago, IL, November 6-11,

2004).

Schuler, D., & Namioka, A. (1993). Participatory design: Principles and practices. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Suchman, L. (1987). Plans and situated actions: The problem of human-machine

communication. New York: Cambridge University Press.

References 23

Sullivan, K. (2004). Preliminary report of the NSF Workshop on the Science of Design: Software

and Software Intensive Systems. Retrieved on May 1, 2004, from

http://www.cs.virginia.edu/~sullivan/sdsis/

SDSIS%20Preliminary%20Report%20020210b.pdf

Sun Microsystems. (2004). JavaServer Pages technology. Retrieved May 1, 2004, from

http://java.sun.com/products/jsp/

Swartout, B., Patil, R., Knight, K., & Russ, T. (1996). Toward distributed use of large-scale

ontologies. In Proceedings of the 10th Knowledge Acquisition for Knowledge-Based Systems

Workshop. Retrieved May 1, 2004, from

http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/Banff_96_final_2.html

Tigris.org. (2004). ArgoUML tool. Retrieved May 9, 2004, from http://argouml.tigris.org/

Tilley, S., & Huang, S. (2003). A qualitative assessment of the efficacy of UML diagrams as a

form of graphical documentation in aiding program understanding. In Proceedings of the

21st Annual International Conference on Documentation (pp. 184-191). New York: ACM Press.

U.S. Congress, Office of Technology Assessment. (1992). Testing in American schools: Asking

the right questions (OTA-SET-519). Washington, DC: U.S. Government Printing Office.

Zhu, X., & Simon, H. A. (1987). Learning mathematics from examples and by doing.

Cognition and Instruction, 4, 137-166.

Sponsor
The National Science Foundation, Grant REC-0129331

Prime Grantee
SRI International. Center for Technology in Learning

Subgrantees
University of Maryland

University of California, Berkeley. Berkeley Evaluation & Assessment
Research (BEAR) Center and The Full Option Science System (FOSS)

University of Michigan. BioKIDs

P A D I

M I C H I G A NM I C H I G A N

	Introduction
	Modeling with Collaboration and Validation
	Background

	Limitations of Existing Domain Modeling Techniques
	Unified Modeling Language (UML)
	Ontological Engineering
	The Point of View of a Nontechnical Expert

	Example-Based Modeling (EMo)
	The Role of Examples in Domain Modeling
	Design Process
	Use of EMo

	EMo Features
	Collaboration through Shared Editing and Viewing
	Shared-Relationship Attributes versus Owned Attributes
	Exporting XML of the Models and Examples
	Permissions Can Be Specified per Instance (per Row)
	Menus Can Constrain Attribute Values
	Special Handling Is Possible via Extensions

	EMo Implementation
	Three-Tier Application within the Expresso Framework
	Node-Attribute-Relation

	Future Directions
	Conclusions
	References

